
RPM Packaging
How software delivery works and why RPM packaging is more current than ever

Fabio Alessandro Locati
26 October 2016

Outline

Intro

Deployments

RPM Processes

RPM and Docker

1

Intro

About me

• RPM user since 2001
• IT Consultant since 2004
• RPMs creator since 2013

2

Deployment in the past

• Mayority of application needed to be deployed on a single system
• Annual/Bi-annual
• All hands on deck

• Devs ready to patch
• Ops ready to deploy work-around

• Usually performed during night-time
• Hours of downtime
• Very expensive deployments

3

Today expectations

• Deploy multiple times every day
• Cheap deployments
• No down time
• Need of mass deployment (tens/hundreds/thousands of systems)
• Horizontal (dynamic) scalability

4

Deployments

Items that could be involved in deployments

• Code
• Source Control System (SCM): git, hg, svn, cvs
• Build system: Koji, Jenkins, Shell
• Software packaging system: RPM, DEB, Docker, WAR, generic archive
• Test system: Bodhi, Jenkins
• Environment packaging system: Docker, PyEnv
• Orchestration tool: Ansible, Puppet, Salt, Chef, Kubernetes
• Execution environment: Native OS, OpenStack, OpenShift, Docker, runc

5

RPM as software packaging system

• Advantages
• Very well known format
• Open Standard
• Clear distinction between compile environment and run environment
• Easy to integrate with any kind of environment
• Very good at resolving dependencies
• Checksum of all files
• Very rigid policies

• Disadvantages
• Heavily connected with RPM-based distro (Fedora, RHEL, OEL, SLES, OpenSUSE,

CentOS, SL)
• Very rigid policies

6

RPM components

• SPEC file
• Sources files (at least 1)
• Patches (eventually)

7

RPM Processes

RPM build process

• Fetch of the SPEC file
• Fetch of sources/patches
• Creation of the .src.rpm file
• Creation of binaries .rpm files

8

Fedora pipeline

• SPEC file, additional sources, and patches in git repo
• Upstream source in cache system
• Build in Koji
• Promotion to Bodhi testing branch
• Automated tests by Bodhi and AutoQA
• Manual testing
• Promotion to Bodhi stable branch

9

Example RPM pipeline 1

• SPEC file, additional sources, and patches in git repo
• Build in Koji
• Promotion to Bodhi testing branch
• Automated tests by Bodhi and AutoQA
• Manual testing
• Promotion to Bodhi stable branch
• Simple upgrade of live system (yum update -y PACKAGE)

10

Example RPM pipeline 2

• SPEC file, additional sources, and patches in git repo
• Build in Koji
• Creation of a Docker image
• Automated tests
• Manual testing
• Propagate the new Docker image

11

RPM and Docker

RPM and Docker

• RPM work very well in Docker environments
• Installing RPMs allow a cleaner Docker file and image
• RPMs can be deployed within or without Docker

12

Docker example

RUN dnf install -y tar make gcc ruby ruby-devel rubygems graphviz \
rubygem-nokogiri unzip findutils which wget python-devel \
zlib-devel libjpeg-devel redhat-rpm-config patch \
&& dnf clean packages \
&& gem install --no-ri --no-rdoc asciidoctor --version \

$ASCIIDOCTOR_VERSION \
&& gem install --no-ri --no-rdoc asciidoctor-pdf --version \

1.5.0.alpha.11 \
&& gem install --no-ri --no-rdoc slim \
&& (curl -LkSs https://api.github.com/repos/asciidoctor \

| tar xfz - -C $BACKENDS --strip-components=1) \
&& wget https://bitbucket.org/pypa/setuptools/raw/bootstrap \

-O - | python \
&& easy_install actdiag

13

Docker example with RPM

RUN dnf install -y rubygem-asciidoctor-pdf \
&& dnf clean packages

14

Size of the images

• Fedora base image: 204MB
• First image: 776MB
• Second image: 238MB

15

Additional resources

• Laboratorio ICT, 14:00 - Come pacchettizzare applicazioni in formato RPM
• Slides: https://static.fale.io/slides/20161026-en-rpm.pdf
• Official website: http://rpm.org
• Fedora guide: https://fedoraproject.org/wiki/How_to_create_an_RPM_package
• RPM Guide: http://rpm-guide.readthedocs.io

16

	Intro
	Deployments
	RPM Processes
	RPM and Docker

