
On-premise data centers
do not need to be legacy

Fabio Alessandro "Fale" Locati
EMEA Associate Principal Specialist Solutions Architect



TOC

A little bit of history

What is cloud

Lessons we can learn

Technologies considerations and bets

Conclusions

Q&A



About me

GNU/Linux user since 2001
Working with GNU/Linux since 2004
Currently working for Red Hat



A little bit of history



Very brief "cloud" history

1998 - Rackspace is founded
2005 - SoftLayer is founded
2006 - AWS launches Simple Storage Service (S3)
2006 - AWS launches Elastic Compute Cloud (EC2)
2008 - Google launches Google App Engine
2021 - AWS has over 200 services



Very brief non-"cloud" history

1964 - IBM introduces the CP-40, the first mainframe with time-sharing
technology
late 1960s - IBM releases SIMMON, the first hypervisor
1974 - Gerald Popek and Robert Goldberg classify the hypervisors into two
types:

Type 1: bare-metal virtualization
Type 2: hosted [on top of the host Operating System] virtualization

1998 - VMware founded
2001 - VMware releases ESX 1.0 Server
2003 - Xen first release
2003 - VMware releases Virtual Center 1.0 with vMotion
2008 - Microsoft releases Hyper-V



What is cloud



What is cloud?

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct
active management by the user. (Wikipedia) Cloud computing is the on-demand
availability of computer system resources, especially data storage (cloud storage)
and computing power, without direct active management by the user. (Wikipedia)
A business model where one party rents to a second party computer system
resources, especially data storage (cloud storage) and computing power, with the
smallest granularity possible.

Time: month -> hour -> minute -> second -> millisecond
Compute: CPU -> Core -> vCore -> fractional vCPU



Lessons we can learn



Separation of concerns

Standardize the interface between infrastructure and workload
Scalability at workload level
Workload have an abstract concept of the physical architecture



Functional business model

Standardize the interface between infrastructure and workload
Bill back infrastructure costs to the workloads owners
Keep the costs down



Maintain control

Do not use third-party proprietary software
Evaluate buy vs build decisions preferring the latter
Be aware of lock-ins
Product between the probability that a component will require substitution
during the solution life and the total costs in case of substitution.



Technologies
considerations and bets



KISS

Reduce the complexity of your system to a minimum
Prefer build-time complexity over run-time complexity
Minimize the amount of services available



Containers

Use a Kubernetes distribution
DIY/Community
Commercial

Fully open source
Trustworthy company
Long track record
Heavily involved in upstream development



Automation

Use an immutable approach to infrastructure
Version the infrastructure (eg: gitops)
Automate the whole process



Conclusions



Putting all together

Infrastructure
API
Workloads



Putting it all together - Infrastructure

Create/Architect for multiple DataCenters (and multiple clusters) but hide
them from the workload developer
Deploy Kubernetes container platform clusters on bare-metal
Use a tool to manage and abstract the clusters (eg: Open Cluster
Management)
Automate all the infrastracture pieces and configuration



Putting it all together - API

Define discrete ”regions” based on legal frameworks (eg: eu, us)
Standardize the Kubernetes APIs as the only interfaces between
infrastructure and workload
Start providing only: OCI registry, Object Storage, and a very limited subset
of Kubernetes objects (eg: Pods, Deployments, Stateful SetsServices, PV,
PVC, ConfigMaps, Secrets)
Provide more services once you have a good strategy to support them and
many of your users are already using the technology (eg: Databases)



Putting it all together - Workloads

Create a simple UX to submit the creation/update/deletion of workloads
objects
Store workloads objects in a versioned storage (eg: git) and automate
deployment
Require (opt-out?) applications resilient to restarts, replications, etc.



Q&A



Thank you
Red Hat is the world’s leading provider of
enterprise open source software
solutions. Award-winning support,
training, and consulting services make
Red Hat a trusted adviser to the Fortune
500.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHat

	A little bit of history
	What is cloud
	Lessons we can learn
	Technologies considerations and bets
	Conclusions
	Q&A

