E possibile creare private cloud di
successo!

Fabio Alessandro “Fale” Locati
Associate Principal Solutions Architect @ Red Hat

improcve

adws

@ e

(eSharp:

we make [T run.

blexin

CON NOI E SEMPLICE

©

EssilorLuxottica

Our Vision. Your Future.

Eell\/code

vvvvvvvvvvvvv

Spreaker

From @D iHeart

& webscience

@ an adesso company

N
=

CANTAcALclm

i®

=
HI

improcve

TOC

What is cloud?
Lessons we can learn from public clouds
Technologies considerations and bets

Conclusions

@ RedHat

About me

GNU/Linux user since 2001

Working with GNU/Linux since 2004
Working with Cloud platforms since 2009
Certified AWS and Google Cloud Architect
Currently working for Red Hat

@ RedHat

Why private cloud?

@ Technical requirements
@ Legal requirements

@ Financial requirements
@ Organizational decision

@ RedHat

What is cloud?

What is cloud?

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct

actlve management by the user. (W|k|ped|a) Gleeel—eeﬂorpbmng—ls—t-he—eﬂ-éemané

A business model Where one party rents to a second party computer system
resources, especially data storage (cloud storage) and computing power, with the
smallest granularity possible.

@ Time: month -> hour -> minute -> second -> millisecond

@ Compute: CPU -> Core -> vCore -> fractional vCPU

@ RedHat

Lessons we can learn from
public clouds

Separation of concerns

@ Standardize the interface between infrastructure and workload
@ Scalability at workload level

@ Workloads have an abstract concept of the physical architecture

@ RedHat

Functional business model

@ Standardize the interface between infrastructure and workloads
@ Bill back infrastructure costs to the workloads owners
@ Keep the costs down

@ RedHat

Maintain control

@ Do not use third-party proprietary software
@ Evaluate buy vs build decisions preferring the latter

@ Be aware of lock-ins
Product between the probability that a component will require substitution
during the solution life and the total costs in case of substitution.

@ RedHat

Technologies
considerations and bets

KISS

@ Reduce the complexity of your system to a minimum
@ Prefer build-time complexity over run-time complexity

@ Minimize the amount of services available

@ RedHat

Containers

@ Use a Kubernetes distribution

e DIY/Community
e Commercial

@ Fully open source
@ Trustworthy company
@ "Valuable” offering

@ RedHat

Automation

@ Use an immutable approach to infrastructure
@ Version the infrastructure (eg: gitops)
@ Automate process end-to-end

@ RedHat

Conclusions

Putting all together

@ Infrastructure
o API
@ Workloads

@ RedHat

Putting it all together - Infrastructure

@ Create/Architect for multiple DataCenters (and multiple clusters) but hide
them from the workload developer

@ Deploy Kubernetes container platform clusters on bare-metal

@ Use a tool to manage and abstract the clusters (eg: Open Cluster
Management)

@ Automate all the infrastracture pieces and configuration

@ RedHat

Putting it all together - API

@ Define discrete "regions” based on non-technical requirements, like legal
frameworks (eg: eu, us)

@ Standardize the Kubernetes APIs as the only interfaces between
infrastructure and workload

@ Start providing only: OCl registry, Object Storage, and a very limited subset
of Kubernetes objects (eg: Pods, Deployments, Stateful SetsServices, PV,
PVC, ConfigMaps, Secrets)

@ Provide more services once you have a good strategy to support them and
many of your users are already using the technology (eg: Databases)

@ RedHat

Putting it all together - Workloads

@ Create a simple UX to submit the creation/update/deletion of workloads
objects

@ Store workloads objects in a versioned storage (eg: git) and automate
deployment

@ Require (opt-out?) applications resilient to restarts, replications, etc.

@ RedHat

GRAZIE!

	What is cloud?
	Lessons we can learn from public clouds
	Technologies considerations and bets
	Conclusions

