




TOC

What is cloud?

Lessons we can learn from public clouds

Technologies considerations and bets

Conclusions



About me

GNU/Linux user since 2001
Working with GNU/Linux since 2004
Working with Cloud platforms since 2009
Certified AWS and Google Cloud Architect
Currently working for Red Hat



Why private cloud?

Technical requirements
Legal requirements
Financial requirements
Organizational decision



What is cloud?



What is cloud?

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct
active management by the user. (Wikipedia) Cloud computing is the on-demand
availability of computer system resources, especially data storage (cloud storage)
and computing power, without direct active management by the user. (Wikipedia)
A business model where one party rents to a second party computer system
resources, especially data storage (cloud storage) and computing power, with the
smallest granularity possible.

Time: month -> hour -> minute -> second -> millisecond
Compute: CPU -> Core -> vCore -> fractional vCPU



Lessons we can learn from
public clouds



Separation of concerns

Standardize the interface between infrastructure and workload
Scalability at workload level
Workloads have an abstract concept of the physical architecture



Functional business model

Standardize the interface between infrastructure and workloads
Bill back infrastructure costs to the workloads owners
Keep the costs down



Maintain control

Do not use third-party proprietary software
Evaluate buy vs build decisions preferring the latter
Be aware of lock-ins
Product between the probability that a component will require substitution
during the solution life and the total costs in case of substitution.



Technologies
considerations and bets



KISS

Reduce the complexity of your system to a minimum
Prefer build-time complexity over run-time complexity
Minimize the amount of services available



Containers

Use a Kubernetes distribution
DIY/Community
Commercial

Fully open source
Trustworthy company
”Valuable” offering



Automation

Use an immutable approach to infrastructure
Version the infrastructure (eg: gitops)
Automate process end-to-end



Conclusions



Putting all together

Infrastructure
API
Workloads



Putting it all together - Infrastructure

Create/Architect for multiple DataCenters (and multiple clusters) but hide
them from the workload developer
Deploy Kubernetes container platform clusters on bare-metal
Use a tool to manage and abstract the clusters (eg: Open Cluster
Management)
Automate all the infrastracture pieces and configuration



Putting it all together - API

Define discrete ”regions” based on non-technical requirements, like legal
frameworks (eg: eu, us)
Standardize the Kubernetes APIs as the only interfaces between
infrastructure and workload
Start providing only: OCI registry, Object Storage, and a very limited subset
of Kubernetes objects (eg: Pods, Deployments, Stateful SetsServices, PV,
PVC, ConfigMaps, Secrets)
Provide more services once you have a good strategy to support them and
many of your users are already using the technology (eg: Databases)



Putting it all together - Workloads

Create a simple UX to submit the creation/update/deletion of workloads
objects
Store workloads objects in a versioned storage (eg: git) and automate
deployment
Require (opt-out?) applications resilient to restarts, replications, etc.




	What is cloud?
	Lessons we can learn from public clouds
	Technologies considerations and bets
	Conclusions

