
IBM TechExchange EMEA 2024 - lab 2078

Fabio Alessandro “Fale” Locati

v2024-01-23

Contents

Ansible 3
Check the Prerequisites . 3

Objective . 3
Guide . 3

The Ansible Basics . 6
Objective . 6
Guide . 6

Writing Your First Playbook . 11
Objective . 11
Guide . 11

Using Variables . 19
Objective . 20
Guide . 20

AAP 25
Introduction to Ansible automation controller 25

What’s New in Ansible automation controller 4.0 25
Objective . 26
Guide . 26

Workshop Exercise - Inventories, credentials and ad hoc commands . . 28
Objective . 28
Guide . 28

Workshop Exercise - Projects & Job Templates 31
Objective . 31
Guide . 31

Workshop Exercise - Role-based access control 35
Objective . 35
Guide . 35

Ansible - advanced 39
Conditionals, Handlers and Loops . 39

Objective . 39
Guide . 39

Templates . 44
Objective . 44
Guide . 44

Roles - Making your playbooks reusable 46

1

CONTENTS 2

Objective . 46
Guide . 47
Troubleshooting problems . 52

Ansible

Check the Prerequisites
Objective

• Understand the lab topology and how to access the environment.

• Understand how to work the workshop exercises

• Understand challenge labs

These first few lab exercises will be exploring the command-line utilities of the
Ansible Automation Platform. This includes:

• ansible-navigator - a command line utility and text-based user interface
(TUI) for running and developing Ansible automation content.

• ansible-core - the base executable that provides the framework, language
and functions that underpin the Ansible Automation Platform. It also in-
cludes various cli tools like ansible, ansible-playbook and ansible-doc.
Ansible Core acts as the bridge between the upstream community with the
free and open source Ansible and connects it to the downstream enterprise
automation offering from Red Hat, the Ansible Automation Platform.

• Execution Environments - not specifically covered in this workshop be-
cause the built-in Ansible Execution Environments already included all
the Red Hat supported collections which includes all the collections we
use for this workshop. Execution Environments are container images that
can be utilized as Ansible execution.

• ansible-builder - not specifically covered in this workshop, ansible-builder
is a command line utility to automate the process of building Execution
Environments.

If you need more information on new Ansible Automation Platform components
bookmark this landing page https://red.ht/AAP-20

Guide
Your Lab Environment

In this lab you work in a pre-configured lab environment. You will have access
to the following hosts:

3

https://github.com/ansible/ansible-navigator
https://docs.ansible.com/core.html
https://docs.ansible.com/automation-controller/latest/html/userguide/execution_environments.html
https://github.com/ansible/ansible-builder
https://red.ht/AAP-20

ANSIBLE 4

Role Inventory name
Ansible Control Host 10.3.48.100
Managed Host 10.3.48.[100+PARTICIPANT_ID]

Step 1 - Access the Environment

You can access the environment, by connecting via SSH to the Ansible Control
Host:

ssh USER@10.3.48.100

Step 2 - Using the Terminal

Create and navigate to the rhel-workshop directory on the Ansible control
node terminal.

[student@controller ~]$ mkdir ~/rhel-workshop/
[student@controller ~]$ cd ~/rhel-workshop/
[student@controller rhel-workshop]$ pwd
/home/student/rhel-workshop
[student@controller rhel-workshop]$

• ~ - the tilde in this context is a shortcut for the home directory,
i.e. /home/student

• mkdir - Linux command to create a directory
• cd - Linux command to change directory
• pwd - Linux command for print working directory. This will show the full

path to the current working directory.

Step 3 - Examining Execution Environments

Run the ansible-navigator command with the images argument to look at
execution environments configured on the control node:

$ ansible-navigator images

Figure 1: ansible-navigator images

Note: The output you see might differ from the above output

ANSIBLE 5

This command gives you information about all currently installed Execution
Environments or EEs for short. Investigate an EE by pressing the correspond-
ing number. For example pressing 2 with the above example will open the
ee-supported-rhel8 execution environment:

Figure 2: ee main menu

Selecting 2 for Ansible version and collections will show us all Ansible
Collections installed on that particular EE, and the version of ansible-core:

Figure 3: ee info

Step 4 - Examining the ansible-navigator configuration

Either use Visual Studio Code to open or use the cat command to view the
contents of the ansible-navigator.yml file. The file is located in the home
directory:

ANSIBLE 6

$ cat ~/.ansible-navigator.yml

ansible-navigator:
ansible:
inventory:
entries:
- ~/hosts

execution-environment:
image: registry.redhat.io/ansible-automation-platform-24/ee-supported-rhel8:latest
enabled: true
container-engine: podman
pull:
policy: missing

volume-mounts:
- src: /etc/ansible
dest: /etc/ansible

Note the following parameters within the .ansible-navigator.yml file:

• inventories: shows the location of the ansible inventory being used
• execution-environment: where the default execution environment is set

For a full listing of every configurable knob checkout the documentation

Step 5 - Challenge Labs

You will soon discover that many chapters in this lab guide come with a “Chal-
lenge Lab” section. These labs are meant to give you a small task to solve using
what you have learned so far. The solution of the task is shown underneath a
warning sign.

The Ansible Basics
Objective
In this exercise, we are going to explore the latest Ansible command line utility
ansible-navigator to learn how to work with inventory files and the listing
of modules when needing assistance. The goal is to familarize yourself with
how ansible-navigator works and how it can be used to enrich your Ansible
experience.

This exercise will cover

• Working with inventory files
• Locating and understanding an ini formatted inventory file
• Listing modules and getting help when trying to use them

Guide
Step 1 - Work with your Inventory

An inventory file is a text file that specifies the nodes that will be managed by the
control machine. The nodes to be managed may include a list of hostnames or

https://ansible.readthedocs.io/projects/navigator/settings/

ANSIBLE 7

IP addresses of those nodes. The inventory file allows for nodes to be organized
into groups by declaring a host group name within square brackets ([]).

To use the ansible-navigator command for host management, you need to
provide an inventory file which defines a list of hosts to be managed from the
control node. In this lab, the inventory is provided by your instructor. The
inventory file is an ini formatted file listing your hosts, sorted in groups, addi-
tionally providing some variables. It looks like:

[web]
node ansible_host=<10.3.48.[100+PARTICIPANT_ID]>

[control]
controller ansible_host=10.3.48.100

Ansible is already configured to use the inventory specific to your environment.
We will show you in the next step how that is done. For now, we will execute
some simple commands to work with the inventory.

To reference all the inventory hosts, you supply a pattern to the ansible-navigator
command. ansible-navigator inventory has a --list option which can be
useful for displaying all the hosts that are part of an inventory file including
what groups they are associated with.

[student@controller rhel_workshop]$ cd /home/student
[student@controller ~]$ ansible-navigator inventory --list -m stdout
{

"_meta": {
"hostvars": {

"controller": {
"ansible_host": "10.3.48.100"

},
"node": {

"ansible_host": "10.3.48.101"
}

}
},
"all": {

"children": [
"control",
"ungrouped",
"web"

]
},
"control": {

"hosts": [
"controller"

]
},
"web": {

"hosts": [
"node"

ANSIBLE 8

]
}

}

NOTE: -m is short for --mode which allows for the mode to be switched to
standard output instead of using the text-based user interface (TUI).

If the --list is too verbose, the option of --graph can be used to provide a
more condensed version of --list.

[student@controller ~]$ ansible-navigator inventory --graph -m stdout
@all:

|--@control:
| |--controller
|--@ungrouped:
|--@web:
| |--node

We can clearly see that nodes: node is part of the web group, while controller
is part of the control group.

An inventory file can contain a lot more information, it can organize your hosts
in groups or define variables. In our example, the current inventory has the
groups web and control. Run Ansible with these host patterns and observe the
output:

Using the ansible-navigator inventory command, we can also run com-
mands that provide information only for one host or group. For example, give
the following commands a try to see their output.

[student@controller ~]$ ansible-navigator inventory --graph web -m stdout
[student@controller ~]$ ansible-navigator inventory --graph control -m stdout
[student@controller ~]$ ansible-navigator inventory --host node -m stdout

Tip

The inventory can contain more data. E.g. if you have hosts that
run on non-standard SSH ports you can put the port number after
the hostname with a colon. Or you could define names specific to
Ansible and have them point to the “real” IP or hostname.

Step 2 - Listing Modules and Getting Help

Ansible Automation Platform comes with multiple supported Execution En-
vironments (EEs). These EEs come with bundled supported collections that
contain supported content, including modules.

Tip

In ansible-navigator exit by pressing the button ESC.

To browse your available modules first enter interactive mode:

$ ansible-navigator

ANSIBLE 9

Figure 4: picture of ansible-navigator

First browse a collection by typing :collections

:collections

Figure 5: picture of ansible-navigator

To browse the content for a specific collections, type the corresponding number.
For example in the example screenshot above the number 0 corresponds to
amazon.aws collection. To zoom into collection type the number 0.

0

ANSIBLE 10

Figure 6: picture of ansible-navigator

Get help for a specific module including usage by zooming in further. For
example the module ec2_metadata_facts corresponds to 3.

:3

Scrolling down using the arrow keys or page-up and page-down can show us
documentation and examples.

Figure 7: picture of ansible-navigator

You can also skip directly to a particular module by simply typing

ANSIBLE 11

:doc namespace.collection.module-name. For example typing :doc
amazon.aws.ec2_metadata_facts would skip directly to the final page shown
above.

Tip

Different execution environments can have access to different col-
lections, and different versions of those collections. By using the
built-in documentation you know that it will be accurate for that
particular version of the collection.

Writing Your First Playbook
Objective
This exercise covers using Ansible to build an Apache web server on Red Hat
Enterprise Linux. This exercise covers the following Ansible fundamentals:

• Understanding Ansible module parameters
• Understanding and using the following modules

– dnf module
– service module
– copy module

• Understanding Idempotence and how Ansible modules can be idempotent

Guide
Playbooks are files which describe the desired configurations or steps to imple-
ment on managed hosts. Playbooks can change lengthy, complex administrative
tasks into easily repeatable routines with predictable and successful outcomes.

A playbook can have multiple plays and a play can have one or multiple tasks.
In a task a module is called, like the modules in the previous chapter. The goal
of a play is to map a group of hosts. The goal of a task is to implement modules
against those hosts.

Tip

Here is a nice analogy: When Ansible modules are the tools in your
workshop, the inventory is the materials and the Playbooks are the
instructions.

Step 1 - Playbook Basics

Playbooks are text files written in YAML format and therefore need:

• to start with three dashes (---)

• proper indentation using spaces and not tabs!

There are some important concepts:

• hosts: the managed hosts to perform the tasks on

https://docs.ansible.com/ansible/latest/modules/dnf_module.html
https://docs.ansible.com/ansible/latest/modules/service_module.html
https://docs.ansible.com/ansible/latest/modules/copy_module.html
https://en.wikipedia.org/wiki/Idempotence

ANSIBLE 12

• tasks: the operations to be performed by invoking Ansible modules and
passing them the necessary options

• become: privilege escalation in playbooks

Warning

The ordering of the contents within a Playbook is important, because
Ansible executes plays and tasks in the order they are presented.

A Playbook should be idempotent, so if a Playbook is run once to put the
hosts in the correct state, it should be safe to run it a second time and it should
make no further changes to the hosts.

Tip

Most Ansible modules are idempotent, so it is relatively easy to
ensure this is true.

Step 2 - Creating a Directory Structure and File for your Playbook

Enough theory, it’s time to create your first Ansible playbook. In this lab you
create a playbook to set up an Apache web server in three steps:

1. Install httpd package
2. Enable/start httpd service
3. Copy over an web.html file to each web host

This Playbook makes sure the package containing the Apache web server is
installed on node.

There is a best practice on the preferred directory structures for playbooks. We
strongly encourage you to read and understand these practices as you develop
your Ansible ninja skills. That said, our playbook today is very basic and
creating a complex structure will just confuse things.

Instead, we are going to create a very simple directory structure for our playbook,
and add just a couple of files to it.

On your control host ansible, create a directory called ansible-files in your
home directory and change directories into it:

[student@controller ~]$ mkdir ansible-files
[student@controller ~]$ cd ansible-files/

Add a file called apache.yml with the following content. As discussed in the
previous exercises, use vi/vim or nano.

- name: Apache server installed
hosts: node
become: True

This shows one of Ansible’s strengths: The Playbook syntax is easy to read and
understand. In this Playbook:

• A name is given for the play via name:.
• The host to run the playbook against is defined via hosts:.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

ANSIBLE 13

• We enable user privilege escalation with become:.

Tip

You obviously need to use privilege escalation to install a package
or run any other task that requires root permissions. This is done
in the Playbook by become: yes.

Now that we’ve defined the play, let’s add a task to get something done. We
will add a task in which dnf will ensure that the Apache package is installed in
the latest version. Modify the file so that it looks like the following listing:

- name: Apache server installed
hosts: node
become: True
tasks:

- name: Install Apache
ansible.builtin.dnf:
name: httpd

Tip

Since playbooks are written in YAML, alignment of the lines and
keywords is crucial. Make sure to vertically align the t in task with
the b in become. Once you are more familiar with Ansible, make
sure to take some time and study a bit the YAML Syntax.

In the added lines:

• We started the tasks part with the keyword tasks:.
• A task is named and the module for the task is referenced. Here it uses

the dnf module.
• Parameters for the module are added:

– name: to identify the package name
– state: to define the wanted state of the package

Tip

The module parameters are individual to each module. If in doubt,
look them up again with ansible-doc.

Save your playbook and exit your editor.

Step 3 - Running the Playbook

With the introduction of Ansible Automation Platform 2, several new key com-
ponents are being introduced as a part of the overall developer experience. Exe-
cution environments have been introduced to provide predictable environments
to be used during automation runtime. All collection dependencies are con-
tained within the execution environment to ensure that automation created in
development environments runs the same as in production environments.

What do you find within an execution environment?

• RHEL UBI 8

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

ANSIBLE 14

• Ansible 2.9 or Ansible Core 2.11
• Python 3.8
• Any content Collections
• Collection python or binary dependencies.

Why use execution environments?

They provide a standardized way to define, build and distribute the environ-
ments that the automation runs in. In a nutshell, Automation execution envi-
ronments are container images that allow for easier administration of Ansible
by the platform administrator.

Considering the shift towards containerized execution of automation, automa-
tion development workflow and tooling that existed before Ansible Automation
Platform 2 have had to be reimagined. In short, ansible-navigator replaces
ansible-playbook and other ansible-* command line utilities.

With this change, Ansible playbooks are executed using the ansible-navigator
command on the control node.

The prerequisites and best practices for using ansible-navigator have been
done for you within this lab.

These include:

• Installing the ansible-navigator package
• Creating a default settings ~/.ansible-navigator.yml for all your

projects (optional)
• All execution environment (EE) logs are stored within the execution folder

For more information on the Ansible navigator settings

Tip

The parameters for ansible-navigator maybe modified for
your specific environment. The current settings use a de-
fault ansible-navigator.yml for all projects, but a specific
ansible-navigator.yml can be created for each project and is the
recommended practice.

To run your playbook, use the ansible-navigator run <playbook> command
as follows:

[student@controller ansible-files]$ ansible-navigator run apache.yml

Tip

The existing ansible-navigator.yml file provides the loca-
tion of your inventory file. If this was not set within your
ansible-navigator.yml file, the command to run the playbook
would be: ansible-navigator run apache.yml -i ~/hosts

When running the playbook, you’ll be displayed a text user interface (TUI)
that displays the play name among other information about the playbook that
is currently run.

PLAY NAME OK CHANGED UNREACHABLE FAILED SKIPPED IGNORED IN PROGRESS TASK COUNT PROGRESS
0�Apache server installed 2 1 0 0 0 0 0 2 COMPLETE

https://github.com/ansible/ansible-navigator/blob/main/docs/settings.rst

ANSIBLE 15

If you notice, prior to the play name Apache server installed, you’ll see a
0. By pressing the 0 key on your keyboard, you will be provided a new window
view displaying the different tasks that ran for the playbook completion. In this
example, those tasks included the “Gathering Facts” and “Install Apache”. The
“Gathering Facts” is a built-in task that runs automatically at the beginning of
each play. It collects information about the managed nodes. Exercises later on
will cover this in more detail. The “Install Apache” was the task created within
the apache.yml file that installed httpd.

The display should look something like this:

RESULT HOST NUMBER CHANGED TASK TASK ACTION DURATION
0�OK node 0 False Gathering Facts gather_facts 1s
1�OK node 1 True Install Apache dnf 4s

Taking a closer look, you’ll notice that each task is associated with a number.
Task 1, “Install Apache”, had a change and used the dnf module. In this case,
the change is the installation of Apache (httpd package) on the host node.

By pressing 0 or 1 on your keyboard, you can see further details of the task
being run. If a more traditional output view is desired, type :st within the text
user interface.

Once you’ve completed, reviewing your Ansible playbook, you can exit out of
the TUI via the Esc key on your keyboard.

Tip

The Esc key only takes you back to the previous screen. Once at
the main overview screen an additional Esc key will take you back
to the terminal window.

Once the playbook has completed, connect to node via SSH to make sure Apache
has been installed:

[student@controller ansible-files]$ ssh root@10.3.48.[100+PARTICIPANT_ID]
Last login: Thu Jan 11 10:35:34 2024 from 10.3.48.100

Use the command rpm -qi httpd to verify httpd is installed:

[ec2-user@node ~]$ rpm -qi httpd
Name : httpd
Version : 2.4.37
[...]

Log out of node with the command exit so that you are back on the control host
and verify the installed package with an Ansible playbook labeled package.yml

- name: Check packages
hosts: node
become: True
vars:
p: httpd

tasks:
- name: Gather the packages facts

ANSIBLE 16

ansible.builtin.package_facts:
manager: auto

- name: "Check whether {{ p }} is installed"
ansible.builtin.debug:
msg: "{{ p }} {{ ansible_facts.packages[p][0].version }} is installed!"

when: p in ansible_facts.packages

You can now run it similarly to the previous one:

[student@controller ~]$ ansible-navigator run package.yml -m stdout

PLAY [Check packages] **

TASK [Gathering Facts] ***
ok: [ansible]

TASK [Gather the packages facts] **
ok: [ansible]

TASK [Check whether httpd is installed] *************************************
ok: [ansible] => {

"msg": "httpd 2.4.37 is installed!"
}

PLAY RECAP ***
ansible: ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Run the the ansible-navigator run apache.yml playbook for a second time,
and compare the output. The output “CHANGED” now shows 0 instead of 1
and the color changed from yellow to green. This makes it easier to spot when
changes have occured when running the Ansible playbook.

Step 4 - Extend your Playbook: Start & Enable Apache

The next part of the Ansible playbook makes sure the Apache application is
enabled and started on node.

On the control host, as your student user, edit the file ~/ansible-files/apache.yml
to add a second task using the service module. The Playbook should now
look like this:

- name: Apache server installed
hosts: node
become: True
tasks:

- name: Install Apache
ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:
name: httpd

ANSIBLE 17

enabled: True
state: started

What exactly did we do?

• a second task named “Apache enabled and running” is created
• a module is specified (service)
• The module service takes the name of the service (httpd), if it should

be permanently set (enabled), and its current state (started)

Thus with the second task we make sure the Apache server is indeed running
on the target machine. Run your extended Playbook:

[student@controller ~]$ ansible-navigator run apache.yml

Notice in the output, we see the play had 1 “CHANGED” shown in yellow
and if we press 0 to enter the play output, you can see that task 2, “Apache
enabled and running”, was the task that incorporated the latest change by the
“CHANGED” value being set to True and highlighted in yellow.

• Run the playbook a second time using ansible-navigator to get used to
the change in the output.

• Use an Ansible playbook labeled service_state.yml to make sure the
Apache (httpd) service is running on node, e.g. with: systemctl status
httpd.

- name: Check Status
hosts: node
become: True
vars:
package: httpd

tasks:
- name: "Check status of {{ package }} service"
ansible.builtin.service_facts:
register: service_state

- ansible.builtin.debug:
var: service_state.ansible_facts.services["{{ package }}.service"].state

[student@controller ~]$ ansible-navigator run service_state.yml

Step 5 - Extend your Playbook: Create an web.html

Check that the tasks were executed correctly and Apache is accepting connec-
tions: Make an HTTP request using Ansible’s uri module in a playbook named
check_httpd.yml from the control node to node.

- name: Check URL
hosts: control
vars:
node: "[YOUR NODE IP ADDRESS]"

tasks:
- name: Check that you can connect (GET) to a page and it returns a status 200

ANSIBLE 18

ansible.builtin.uri:
url: "http://{{ node }}"

Warning: Expect a lot of red lines!

[student@controller ~]$ ansible-navigator run check_httpd.yml -m stdout

There are a lot of red lines and an error: As long as there is not at least an
web.html file to be served by Apache, it will throw an ugly “HTTP Error 403:
Forbidden” status and Ansible will report an error. Also, you are not even
seeing the 403 error, since the node port 80 is not reachable due to firewalld’s
configuration which does not allow connections to be allowed.

Let’s start fixing this last issue. To do so, we’ll alter the apache.yml file in the
following way:

- name: Apache server installed
hosts: node
become: True
tasks:

- name: Install Apache
ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:
name: httpd
enabled: True
state: started

- name: Open firewall port
ansible.posix.firewalld:
service: http
immediate: True
permanent: True
state: enabled

What does this new task do? The new task uses the firewalld module and
defines the service option (HTTP standard port is 80/tcp) and the state enabled.
Due to how the firewalld utility works, we need to tell Ansible that we want
the new port to be immediately available and configured in the same way even
after reboot (with the permanent option).

Run your extended Playbook:

[student@controller ansible-files]$ ansible-navigator run apache.yml -m stdout

Now that we have opened the port, you can re-run the check_httpd.yml play-
book and see that we now get the 403 error.

So why not use Ansible to deploy a simple web.html file? On the ansible control
host, as the student user, create the directory files to hold file resources in
~/ansible-files/:

[student@controller ansible-files]$ mkdir files

Then create the file ~/ansible-files/files/web.html on the control node:

ANSIBLE 19

<body>
<h1>Apache is running fine</h1>

</body>

In a previous example, you used Ansible’s copy module to write text supplied
on the command line into a file. Now you’ll use the module in your playbook
to copy a file.

On the control node as your student user edit the file ~/ansible-files/apache.yml
and add a new task utilizing the copy module. It should now look like this:

- name: Apache server installed
hosts: node
become: True
tasks:

- name: Install Apache
ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:
name: httpd
enabled: True
state: started

- name: Open firewall port
ansible.posix.firewalld:
service: http
immediate: True
permanent: True
state: enabled

- name: Copy index.html
ansible.builtin.copy:
src: web.html
dest: /var/www/html/index.html
mode: '644'

What does this new copy task do? The new task uses the copy module and
defines the source and destination options for the copy operation as parameters.

Run your extended Playbook:

[student@controller ansible-files]$ ansible-navigator run apache.yml -m stdout

• Have a good look at the output, notice the changes of “CHANGED” and
the tasks associated with that change.

• Run the Ansible playbook check_httpd.yml using the uri module from
above again to test Apache. The command should now return a friendly
green “status: 200” line, amongst other information.

Using Variables

ANSIBLE 20

Objective
Ansible supports variables to store values that can be used in Ansible playbooks.
Variables can be defined in a variety of places and have a clear precedence.
Ansible substitutes the variable with its value when a task is executed.

This exercise covers variables, specifically

• How to use variable delimiters {{ and }}
• What host_vars and group_vars are and when to use them
• How to use ansible_facts
• How to use the debug module to print variables to the console window

Guide
Intro to Variables

Variables are referenced in Ansible Playbooks by placing the variable name in
double curly braces:

Here comes a variable {{ variable1 }}

Variables and their values can be defined in various places: the inventory, addi-
tional files, on the command line, etc.

The recommended practice to provide variables in the inventory is to define
them in files located in two directories named host_vars and group_vars:

• To define variables for a group “servers”, a YAML file named
group_vars/servers.yml with the variable definitions is created.

• To define variables specifically for a host node, the file host_vars/node.yml
with the variable definitions is created.

Tip

Host variables take precedence over group variables (more about
precedence can be found in the docs).

Step 1 - Create Variable Files

For understanding and practice let’s do a lab. Following up on the theme “Let’s
build a web server. Or two. Or even more…”, you will change the index.html
to show the development environment (dev/prod) a server is deployed in.

On the ansible control host, as the student user, create the directories to hold
the variable definitions in ~/ansible-files/:

[student@controller ansible-files]$ mkdir host_vars group_vars

Now create two files containing variable definitions. We’ll define a variable
named stage which will point to different environments, dev or prod:

• Create the file ~/ansible-files/group_vars/web.yml with this content:

stage: dev

• Create the file ~/ansible-files/host_vars/node.yml with this content:

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

ANSIBLE 21

stage: prod

What is this about?

• For all servers in the web group the variable stage with value dev is
defined. So as default we flag them as members of the dev environment.

• For server node this is overridden and the host is flagged as a production
server. In our case, the web group only contains node, but if it contained
multiple nodes the difference would be more obvious.

Step 2 - Create web.html Files

Now create two files in ~/ansible-files/files/:

One called prod_web.html with the following content:

<body>
<h1>This is a production webserver, take care!</h1>

</body>

And the other called dev_web.html with the following content:

<body>
<h1>This is a development webserver, have fun!</h1>

</body>

Step 3 - Create the Playbook

Now you need a Playbook that copies the prod or dev web.html file - according
to the “stage” variable.

Create a new Playbook called deploy_index_html.yml in the ~/ansible-files/
directory.

Tip

Note how the variable “stage” is used in the name of the file to copy.

- name: Copy web.html
hosts: web
become: True
tasks:

- name: Copy web.html
ansible.builtin.copy:
src: "{{ stage }}_web.html"
dest: /var/www/html/index.html

• Run the Playbook:

[student@controller ansible-files]$ ansible-navigator run deploy_index_html.yml

Step 4 - Test the Result

The Ansible Playbook copies different files as index.html to the hosts, use curl
to test it.

ANSIBLE 22

For node:

[student@controller ansible-files]$ curl http://[10.3.48.[100+PARTICIPANT_ID]
<body>
<h1>This is a production webserver, take care!</h1>

</body>

Tip

You can remove the ~/ansible-files/host_vars/node.yml file
and see that by re-running the Ansible playbook, the deployed page
will change.

Tip

If by now you think: There has to be a smarter way to change content
in files… you are absolutely right. This lab was done to introduce
variables, you are about to learn about templates in one of the future
labs.

Step 5 - Ansible Facts

Ansible facts are variables that are automatically discovered by Ansible from a
managed host. Remember the “Gathering Facts” task listed in the output of
each ansible-navigator execution? At that moment the facts are gathered
for each managed nodes. Facts can also be pulled by the setup module. They
contain useful information stored into variables that administrators can reuse.

To get an idea what facts Ansible collects by default, on your control node as
your student user run the following playbook called setup.yml to get the setup
details of node:

- name: Capture Setup
hosts: node
tasks:

- name: Collect only facts returned by facter
ansible.builtin.setup:
gather_subset:

- all
register: setup

- ansible.builtin.debug:
var: setup

[student@controller ansible-files]$ cd ~
[student@controller ~]$ ansible-navigator run setup.yml -m stdout

This might be a bit too much, you can use filters to limit the output to certain
facts, the expression is shell-style wildcard within your playbook. Create a
playbook labeled setup_filter.yml as shown below. In this example, we filter
to get the eth0 facts as well as memory details of node.

- name: Capture Setup
hosts: node

ANSIBLE 23

tasks:
- name: Collect only specific facts
ansible.builtin.setup:
filter:

- 'ansible_eth0'
- 'ansible_*_mb'

register: setup
- debug:

var: setup

[student@controller ansible-files]$ ansible-navigator run setup_filter.yml -m stdout

Step 6 - Challenge Lab: Facts

• Try to find and print the distribution (Red Hat) of your managed hosts
using a playbook.

Tip

Use the wildcard to find the fact within your filter, then apply a
filter to only print this fact.

Warning

Solution below!

- name: Capture Setup
hosts: node
tasks:

- name: Collect only specific facts
ansible.builtin.setup:
filter:

- '*distribution'
register: setup

- ansible.builtin.debug:
var: setup

With the wildcard in place, the output shows:

TASK [debug] ***
ok: [ansible] => {

"setup": {
"ansible_facts": {

"ansible_distribution": "RedHat"
},
"changed": false,
"failed": false

}
}

With this we can conclude the variable we are looking for is labeled
ansible_distribution.

ANSIBLE 24

Then we can update the playbook to be explicit in its findings and change the
following line:

filter:
- '*distribution'

to:

filter:
- 'ansible_distribution'

[student@controller ansible-files]$ ansible-navigator run setup_filter.yml -m stdout

Step 7 - Using Facts in Playbooks

Facts can be used in a Playbook like variables, using the proper naming, of
course. Create this Playbook as facts.yml in the ~/ansible-files/ directory:

- name: Output facts within a playbook
hosts: node
tasks:

- name: Prints Ansible facts
ansible.builtin.debug:
msg: The IPv4 address of {{ ansible_fqdn }} is {{ ansible_default_ipv4.address }}

Tip

The “debug” module is handy for e.g. debugging variables or expres-
sions.

Execute it to see how the facts are printed:

[student@controller ansible-files]$ ansible-navigator run facts.yml

Within the text user interface (TUI) window, type :st to capture the following
output:

PLAY [Output facts within a playbook] **

TASK [Gathering Facts] ***
ok: [node]

TASK [Prints Ansible facts] **
ok: [node] =>
msg: The IPv4 address of node is 10.3.48.101

PLAY RECAP ***
node : ok=2 changed=0 unreachable=0 failed=0

AAP

Introduction to Ansible automation controller
What’s New in Ansible automation controller 4.0
Ansible Automation Platform 2 is the next evolution in automation from Red
Hat’s trusted enterprise technology experts. The Ansible Automation Platform
2 release includes automation controller 4.0, the improved and renamed Ansible
Tower.

Controller continues to provide a standardized way to define, operate, and del-
egate automation across the enterprise. It introduces new technologies and an
enhanced architecture that enables automation teams to scale and deliver au-
tomation rapidly.

Why was Ansible Tower renamed to automation controller?

As Ansible Automation Platform 2 continues to evolve, certain functionality has
been decoupled (and will continue to be decoupled in future releases) from what
was formerly known as Ansible Tower. It made sense to introduce the naming
change that better reflects these enhancements and the overall position within
the Ansible Automation Platform suite.

Who is automation controller for?

All automation team members interact with or rely on automation controller,
either directly or indirectly.

• Automation creators develop Ansible playbooks, roles, and modules.
• Automation architects elevate automation across teams to align with IT

processes and streamline adoption.
• Automation operators ensure the automation platform and framework are

operational.

These roles are not necessarily dedicated to a person or team. Many organi-
zations assign multiple roles to people or outsource specific automation tasks
based on their needs.

Automation operators are typically the primary individuals who interact directly
with the automation controller, based on their responsibilities.

25

AAP 26

Objective
The following exercise will provide an Ansible automation controller overview
including going through features that are provided by the Red Hat Ansible
Automation Platform. This will cover automation controller fundamentals such
as:

• Job Templates
• Projects
• Inventories
• Credentials
• Workflows

Guide
Why Ansible automation controller?

Automation controller is a web-based UI that provides an enterprise solution
for IT automation. It

• has a user-friendly dashboard.
• complements Ansible, adding automation, visual management, and moni-

toring capabilities.
• provides user access control to administrators.
• provides distinct view and edit perspectives for automation controller ob-

jects and components.
• graphically manages or synchronizes inventories with a wide variety of

sources.
• has a RESTful API.
• And much more…

Your Ansible automation controller lab environment

In this lab you work in a pre-configured lab environment. You will have access
to the following hosts:

Role Inventory name
Ansible control host & automation controller controller
Managed Host 1 node

The Ansible automation controller provided in this lab is individually setup
for you. Make sure to access the right machine whenever you work with it.
Automation controller has already been installed and licensed for you, the web
UI will be reachable over HTTP/HTTPS.

Dashboard

Let’s have a first look at the automation controller: Point your browser to
https://10.3.48.100.

The web UI of automation controller greets you with a dashboard with a graph

AAP 27

showing:

• recent job activity
• the number of managed hosts
• quick pointers to lists of hosts with problems.

The dashboard also displays real time data about the execution of tasks com-
pleted in playbooks.

Figure 8: Ansible automation controller dashboard

Concepts

Before we dive further into using Ansible automation controller, you should get
familiar with some concepts and naming conventions.

Projects Projects are logical collections of Ansible playbooks in Ansible au-
tomation controller. These playbooks either reside on the Ansible automation
controller instance, or in a source code version control system supported by
automation controller.

Inventories An Inventory is a collection of hosts against which jobs may be
launched, the same as an Ansible inventory file. Inventories are divided into
groups and these groups contain the actual hosts. Groups may be populated
manually, by entering host names into automation controller, from one of An-
sible Automation controller’s supported cloud providers or through dynamic
inventory scripts.

Credentials Credentials are utilized by automation controller for authenti-
cation when launching Jobs against machines, synchronizing with inventory
sources, and importing project content from a version control system. Creden-
tial configuration can be found in the Settings.

AAP 28

automation controller credentials are imported and stored encrypted in automa-
tion controller, and are not retrievable in plain text on the command line by
any user. You can grant users and teams the ability to use these credentials,
without actually exposing the credential to the user.

Templates A job template is a definition and set of parameters for running
an Ansible job. Job templates are useful to execute the same job many times.
Job templates also encourage the reuse of Ansible playbook content and collab-
oration between teams. To execute a job, automation Controller requires that
you first create a job template.

Jobs A job is basically an instance of automation controller launching an
Ansible playbook against an inventory of hosts.

Workshop Exercise - Inventories, credentials and
ad hoc commands
Objective
Explore and understand the lab environment. This exercise will cover

• Locating and understanding:

– Ansible Automation Controller Inventories
– Ansible Automation Controller Credentials

• Running ad hoc commands via the Ansible Automation Controller web
UI

Guide
Examine an Inventory

The first thing we need is an inventory of your managed hosts. This is the
equivalent of an inventory file in command-line Ansible. There is a lot more to
it (like dynamic inventories) but let’s start with the basics.

• You should already have the web UI open, if not: Point your browser to
https://10.3.48.100. The password will be provided by the instructor.

There will be one inventory, the [USER] Inventory. Click the [USER] In-
ventory then click the Hosts button

The inventory information at ~/hosts was pre-loaded into the Ansible Automa-
tion controller Inventory as part of the provisioning process.

$ cat ~/hosts
[web]
node ansible_host=10.3.48.101 ansible_user=s1

[control]
controller ansible_host=10.3.48.100 ansible_user=s1

https://docs.ansible.com/automation-controller/latest/html/userguide/inventories.html
https://docs.ansible.com/automation-controller/latest/html/userguide/credentials.html

AAP 29

Warning

In your inventory the IP addresses will be different.

Examine Machine Credentials

Now we will examine the credentials to access our managed hosts from Automa-
tion controller. As part of the provisioning process for this Ansible Workshop
the [USER] Credential has already been setup.

In the Resources menu choose Credentials. Now click on the [USER] Cre-
dential.

Note the following information:

• Credential Type: Machine- Machine credentials define ssh and user-level
privilege escalation access for playbooks. They are used when submitting
jobs to run playbooks on a remote host.

• Username: matches our command-line Ansible inventory username for
the other Linux nodes

• SSH Private Key: Encrypted - take note that you can’t actually exam-
ine the SSH private key once someone hands it over to Ansible Automation
controller

Run Ad Hoc commands

It is possible to run run ad hoc commands from Ansible Automation controller
as well.

• In the webUI go to Resources → Inventories → [USER] Inventory

• Click the Hosts tab to change into the hosts view and select the node
host by ticking the box to the left of the host entry.

• Click Run Command button. In the next screen you have to specify the
ad hoc command.

Within the Details window, select Module ping and click Next.

Within the Execution Environment window, select Default execution en-
vironment and click Next.

Within the Machine Credential window, select [USER] Credentials and
click Launch.

Tip

The output of the results is displayed once the command has com-
pleted.

The simple ping module doesn’t need options. For other modules you need to
supply the command to run as an argument. Try the command module to find
the userid of the executing user using an ad hoc command.

• In the web UI go to Resources → Inventories → [USER] Inventory

• Click the Hosts tab to change into the hosts view and select the node
host by ticking the box to the left of the host entry.

AAP 30

• Click Run Command button. In the next screen you have to specify the
ad hoc command.

Within the Details window, select Module command, in Arguments type id
and click Next.

Within the Execution Environment window, select Default execution en-
vironment and click Next.

Within the Machine Credential window, select [USER] Credentials and
click Launch.

Tip

After choosing the module to run, Ansible Automation Controller
will provide a link to the docs page for the module when clicking the
question mark next to “Arguments”. This is handy, give it a try.

How about trying to get some secret information from the system? Try to print
out /etc/shadow.

• In the web UI go to Resources → Inventories → [USER] Inventory

• Click the Hosts tab to change into the hosts view and select the node
host by ticking the box to the left of the host entry.

• Click Run Command button. In the next screen you have to specify the
ad hoc command.

Within the Details window, select Module command, in Arguments type cat
/etc/shadow and click Next.

Within the Execution Environment window, select Default execution en-
vironment and click Next.

Within the Machine Credential window, select [USER] Credentials and
click Launch.

Warning

Expect an error!

Oops, the last one didn’t went well, all red.

Re-run the last ad hoc command but this time check the checkbox labeled
Enable privilege escalation.

As you see, this time it worked. For tasks that have to run as root you need
to escalate the privileges. This is the same as the become: True used in your
Ansible Playbooks.

Challenge Lab: Ad Hoc Commands

Okay, a small challenge: Run an ad hoc to make sure the package “tmux” is
installed on all hosts. If unsure, consult the documentation either via the web UI
as shown above or by running [ansible@controller ~]$ ansible-doc yum
on your Automation controller control host.

AAP 31

Warning

Solution below!

• In the web UI go to Resources → Inventories → [USER] Inventory

• Click the Hosts tab to change into the hosts view and select the node
host by ticking the box to the left of the host entry.

• Click Run Command button. In the next screen you have to specify the
ad hoc command.

Within the Details window, select Module yum, in Arguments type
name=tmux, check Enable privilege escalation and click Next.

Within the Execution Environment window, select Default execution en-
vironment and click Next.

Within the Machine Credential window, select [USER] Credentials and
click Launch.

Tip

Notice how the package was instaled via the “CHANGED” output.
If you run the ad hoc command a second time, the output will men-
tion “SUCCESS” and inform you via the message parameter that
there is nothing to do.

Workshop Exercise - Projects & Job Templates
Objective
An Ansible automation controller Project is a logical collection of Ansible
playbooks. You can manage your playbooks by placing them into a source code
management (SCM) system supported by automation controller such as Git or
Subversion.

This exercise covers:

• Understanding and using an Ansible automation controller Project
• Using Ansible playbooks kept in a Git repository.
• Creating and using an Ansible Job Template

Guide
Setup Git Repository

For this demonstration we will use playbooks stored in a Git repository:

https://github.com/ansible/workshop-examples

A playbook to install the Apache web server has already been committed to the
directory rhel/apache, apache_install.yml:

- name: Apache server installed
hosts: web

https://github.com/ansible/workshop-examples

AAP 32

tasks:
- name: latest Apache version installed
ansible.builtin.yum:
name: httpd
state: latest

- name: latest firewalld version installed
ansible.builtin.yum:
name: firewalld
state: latest

- name: firewalld enabled and running
ansible.builtin.service:
name: firewalld
enabled: true
state: started

- name: firewalld permits http service
ansible.builtin.firewalld:
service: http
permanent: true
state: enabled
immediate: yes

- name: Apache enabled and running
ansible.builtin.service:
name: httpd
enabled: true
state: started

Tip

Note the difference to other playbooks you might have written! Most
importantly there is no become and hosts is set to all.

To configure and use this repository as a Source Control Management
(SCM) system in automation controller you have to create a Project that
uses the repository

Create the Project

• Go to Resources → Projects click the Add button. Fill in the form:
– Name: Workshop Project
– Organization: [USER]
– Default Execution Environment: Default execution environment
– Source Control Credential Type: Git
– Enter the URL into the Project configuration
– Source Control URL: https://github.com/ansible/workshop-

examples.git
– Options: Select Clean, Delete, Update Revision on Launch to re-

AAP 33

quest a fresh copy of the repository and to update the repository
when launching a job.

• Click SAVE

The new project will be synced automatically after creation. But you can also
do this manually: Sync the Project again with the Git repository by going to
the Projects view and clicking the circular arrow Sync Project icon to the
right of the Project.

After starting the sync job, go to the Jobs view: there is a new job for the
update of the Git repository.

Create a Job Template and Run a Job

A job template is a definition and set of parameters for running an Ansible job.
Job templates are useful to execute the same job many times. So before running
an Ansible Job from automation controller you must create a Job Template
that pulls together:

• Inventory: On what hosts should the job run?

• Credentials What credentials are needed to log into the hosts?

• Project: Where is the playbook?

• What playbook to use?

Okay, let’s just do that: Go to the Resources -> Templates view, click the
Add button and choose Add job template.

Tip

Remember that you can often click on magnfying glasses to get an
overview of options to pick to fill in fields.

• Name: Install Apache
• Job Type: Run
• Inventory: [USER] Inventory
• Project: Workshop Project
• Execution Environment: Default execution environment
• Playbook: rhel/apache/apache_install.yml
• Credentials: [USER] Credential
• Limit: web
• tasks need to run as root so check Privilege Escalation

• Click Save

You can start the job by directly clicking the blue Launch button, or by clicking
on the rocket in the Job Templates overview. After launching the Job Template,
you are automatically brought to the job overview where you can follow the
playbook execution in real time:

AAP 34

Job Details

Job Run

Since this might take some time, have a closer look at all the details provided:

• All details of the job template like inventory, project, credentials and
playbook are shown.

• Additionally, the actual revision of the playbook is recorded here - this
makes it easier to analyse job runs later on.

• Also the time of execution with start and end time is recorded, giving you
an idea of how long a job execution actually was.

• Selecting Output shows the output of the running playbook. Click on a
node underneath a task and see that detailed information are provided for
each task of each node.

After the Job has finished go to the main Jobs view: All jobs are listed here,

AAP 35

you should see directly before the Playbook run an Source Control Update was
started. This is the Git update we configured for the Project on launch!

Challenge Lab: Check the Result

Time for a little challenge:

• Use an ad hoc command on both hosts to make sure Apache has been
installed and is running.

You have already been through all the steps needed, so try this for yourself.

Tip

What about systemctl status httpd?

Warning

Solution Below

• Go to Resources → Inventories → [USER] Inventory

• In the Hosts view select node and click Run Command

Within the Details window, select Module command, in Arguments type
systemctl status httpd and click Next.

Within the Execution Environment window, select Default execution en-
vironment and click Next.

Within the Machine Credential window, select [USER] Credential and
click Launch.

Tip

The output of the results is displayed once the command has com-
pleted.

Workshop Exercise - Role-based access control
Objective
You have already learned how Ansible automation controller separates creden-
tials from users. Another advantage of Ansible automation controller is the user
and group rights management. This exercise demonstrates Role Based Access
Control (RBAC)

Guide
Ansible automation controller users

There are three types of automation controller users:

• Normal User: Have read and write access limited to the inventory and
projects for which that user has been granted the appropriate roles and
privileges.

AAP 36

• System Auditor: Auditors implicitly inherit the read-only capability for
all objects within the automation controller environment.

• System Administrator: Has admin, read, and write privileges over the
entire automation controller installation.

Let’s create a user:

• In the automation controller menu under Access click Users

• Click the Add button

• Fill in the values for the new user:

– Username: [USER]-wweb

– Password: ansible

– Confirm Password: ansible

– Organization: [USER]

– User Type: Normal User

• Click Save

Ansible automation controller teams

A Team is a subdivision of an organization with associated users, projects, cre-
dentials, and permissions. Teams provide a means to implement role-based
access control schemes and delegate responsibilities across organizations. For
instance, permissions may be granted to a whole Team rather than each user
on the Team.

Create a Team:

• In the menu go to Access → Teams

• Click the Add button and create a team named [USER] Web Content
within the [USER] Organization.

• Click Save

Add a user to the team:

• Click on the team [USER] Web Content and click the Access tab and
click Add.

• Within the Select a Resource Type window, click on the Users re-
source type and click Next.

• Within the Select Items from List, select the checkbox next to the
[USER]-wweb user and click Next.

• Within the Select Roles to Apply, select Member as the role to apply
to the [USER]-wweb user.

Click Save.

AAP 37

Permissions allow to read, modify, and administer projects, inventories, and
other automation controller elements. Permissions can be set for different re-
sources.

Granting permissions

To allow users or teams to actually do something, you have to set permissions.
The user [USER]-wweb should only be allowed to modify content of the as-
signed webservers.

Add the permission to use the Create index.html template:

• Within Resources -> Templates, select Create index.html.

• Select Access tab from the menu and click Add.

• Within the Select a Resource Type window, click on the Users re-
source type and click Next.

• Within the Select Items from List, select the checkbox next to the
[USER]-wweb user and click Next.

• Within the Select Roles to Apply, select Read and Execute as the
roles to apply to the [USER]-wweb user.

• Click Save

Test permissions

Now log out of automation controller’s web UI and in again as the [USER]-
wweb user.

• Go to the Templates view, you should notice for wweb only the Create
index.html template is listed. He is allowed to view and launch, but not
to edit the Template (no Edit button available).

• Run the Job Template by clicking the rocket icon. Enter the values for
the survey questions and launch the job.

• In the following Jobs view have a good look around, note that there where
changes to the host (as expected).

Check the result: execute curl again on the control host to pull the content of
the webserver on node:

#> curl http://10.3.48.[100+PARTICIPANT_ID]

Just recall what you have just done: You enabled a restricted user to run an
Ansible playbook

• Without having access to the credentials

• Without being able to change the playbook itself

• But with the ability to change variables you predefined!

Effectively you provided the power to execute automation to another user with-
out handing out your credentials or giving the user the ability to change the

AAP 38

automation code. And yet, at the same time the user can still modify things
based on the surveys you created.

This capability is one of the main strengths of Ansible automation controller!

Ansible - advanced

Conditionals, Handlers and Loops
Objective
Three foundational Ansible features are:

• Conditionals
• Handlers
• Loops

Guide
Step 1 - Conditionals

Ansible can use conditionals to execute tasks or plays when certain conditions
are met.

To implement a conditional, the when statement must be used, followed by the
condition to test. The condition is expressed using one of the available operators
like e.g. for comparison:

== Compares two objects for equality.
!= Compares two objects for inequality.
> true if the left hand side is greater than the right hand side.
>= true if the left hand side is greater or equal to the right hand side.
< true if the left hand side is lower than the right hand side.
<= true if the left hand side is lower or equal to the right hand side.

For more on this, please refer to the documentation: http://jinja.pocoo.org/
docs/2.10/templates/

As an example you would like to install an FTP server, but only on hosts that
are in the “ftpserver” inventory group.

To do that, first edit the inventory to add another group, and place node in it.
The section to add looks like this:

[ftpserver]
node

39

https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#handlers-running-operations-on-change
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html
http://jinja.pocoo.org/docs/2.10/templates/
http://jinja.pocoo.org/docs/2.10/templates/

ANSIBLE - ADVANCED 40

Edit the inventory ~/hosts to add those lines. When you are done, it will look
similar to the following listing:

Tip

The ansible_host variable only needs to be specified once for a node.
When adding a node to other groups, you do not need to specify the
variable again.

Important Do not copy/paste the example below. Just edit the file to add the
above lines.

[web]
node ansible_host=xx.xx.xx.xx ansible_user=[USER]

[ftpserver]
node

[control]
controller ansible_host=xx.xx.xx.xx ansible_user=[USER]

Next create the file ftpserver.yml on your control host in the ~/ansible-files/
directory:

- name: Install vsftpd on ftpservers
hosts: all
become: True
tasks:

- name: Install FTP server when host in ftpserver group
ansible.builtin.yum:
name: vsftpd
state: latest

when: inventory_hostname in groups["ftpserver"]

Tip

By now you should know how to run Ansible Playbooks, we’ll start
to be less verbose in this guide. Go create and run it. :-)

Run it and examine the output. The expected outcome: The task is skipped on
the ansible host (your control host) because they are not in the ftpserver group
in your inventory file.

TASK [Install FTP server when host in ftpserver group] **************
skipping: [controller]
changed: [node]

Step 2 - Handlers

Sometimes when a task does make a change to the system, an additional task or
tasks may need to be run. For example, a change to a service’s configuration file
may then require that the service be restarted so that the changed configuration
takes effect.

ANSIBLE - ADVANCED 41

Here Ansible’s handlers come into play. Handlers can be seen as inactive tasks
that only get triggered when explicitly invoked using the “notify” statement.
Read more about them in the Ansible Handlers documentation.

As a an example, let’s write a playbook that:

• manages Apache’s configuration file /etc/httpd/conf/httpd.conf on all
hosts in the web group

• restarts Apache when the file has changed

First we need the file Ansible will deploy, let’s just take the one from node1.
Remember to replace the IP address shown in the listing below with the IP
address from your individual node1.

[student@controller ansible-files]$ scp 10.3.48.[100+PARTICIPANT_ID]:/etc/httpd/conf/httpd.conf
~/ansible-files/files/httpd.conf

Next, create the Playbook httpd_conf.yml. Make sure that you are in the
directory ~/ansible-files.

- name: Manage httpd.conf
hosts: web
become: True
tasks:

- name: Copy Apache configuration file
ansible.builtin.copy:
src: httpd.conf
dest: /etc/httpd/conf/
mode: '644'

notify:
- Restart_apache

- name: Open firewall port
ansible.posix.firewalld:
port: 8080/tcp
immediate: True
permanent: True
state: enabled

handlers:
- name: Restart_apache
ansible.builtin.service:
name: httpd
state: restarted

So what’s new here?

• The “notify” section calls the handler only when the copy task actually
changes the file. That way the service is only restarted if needed - and not
each time the playbook is run.

• The “handlers” section defines a task that is only run on notification.

Run the playbook. We didn’t change anything in the file yet so there should not
be any changed lines in the output and of course the handler shouldn’t have
fired.

http://docs.ansible.com/ansible/latest/playbooks_intro.html#handlers-running-operations-on-change

ANSIBLE - ADVANCED 42

• Now change the Listen 80 line in ~/ansible-files/files/httpd.conf
to:

Listen 8080

• Run the playbook again. Now the Ansible’s output should be a lot more
interesting:

– httpd.conf should have been copied over
– The handler should have restarted Apache

Apache should now listen on port 8080. Easy enough to verify:

[student@controller ansible-files]$ curl http://10.3.48.[100+PARTICIPANT_ID]
curl: (7) Failed to connect to 10.3.48.101 port 80: Connection refused
[student@controller ansible-files]$ curl http://10.3.48.[100+PARTICIPANT_ID]:8080
<body>
<h1>Apache is running fine</h1>

</body>

Leave the setting for listen on port 8080. We’ll use this in a later exercise.

Step 3 - Simple Loops

Loops enable us to repeat the same task over and over again. For example,
lets say you want to create multiple users. By using an Ansible loop, you can
do that in a single task. Loops can also iterate over more than just basic lists.
For example, if you have a list of users with their coresponding group, loop
can iterate over them as well. Find out more about loops in the Ansible Loops
documentation.

To show the loops feature we will generate three new users on node. For that,
create the file loop_users.yml in ~/ansible-files on your control node as
your student user. We will use the user module to generate the user accounts.

- name: Ensure users
hosts: node
become: True
tasks:

- name: Ensure three users are present
ansible.builtin.user:
name: "{{ item }}"
state: present

loop:
- dev_user
- qa_user
- prod_user

Understand the playbook and the output:

• The names are not provided to the user module directly. Instead, there is
only a variable called {{ item }} for the parameter name.

• The loop keyword lists the actual user names. Those replace the {{ item
}} during the actual execution of the playbook.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

ANSIBLE - ADVANCED 43

• During execution the task is only listed once, but there are three changes
listed underneath it.

Step 4 - Loops over hashes

As mentioned loops can also be over lists of hashes. Imagine that the users
should be assigned to different additional groups:

- username: dev_user
groups: ftp

- username: qa_user
groups: ftp

- username: prod_user
groups: apache

The user module has the optional parameter groups to list additional users.
To reference items in a hash, the {{ item }} keyword needs to reference the
subkey: {{ item.groups }} for example.

Let’s rewrite the playbook to create the users with additional user rights:

- name: Ensure users
hosts: node
become: True
tasks:

- name: Ensure three users are present
ansible.builtin.user:
name: "{{ item.username }}"
state: present
groups: "{{ item.groups }}"

loop:
- { username: 'dev_user', groups: 'ftp' }
- { username: 'qa_user', groups: 'ftp' }
- { username: 'prod_user', groups: 'apache' }

Check the output:

• Again the task is listed once, but three changes are listed. Each loop with
its content is shown.

Verify that the user dev_user was indeed created on node using the following
playbook:

- name: Get user ID
hosts: node
vars:
myuser: "dev_user"

tasks:
- name: Get {{ myuser }} info
ansible.builtin.getent:
database: passwd
key: "{{ myuser }}"

ANSIBLE - ADVANCED 44

- ansible.builtin.debug:
msg:

- "{{ myuser }} uid: {{ getent_passwd[myuser].1 }}"

$ ansible-navigator run user_id.yml -m stdout

PLAY [Get user ID] ***

TASK [Gathering Facts] ***
ok: [node]

TASK [Get dev_user info] ***
ok: [node]

TASK [debug] ***
ok: [node] => {

"msg": [
"dev_user uid: 1002"

]
}

PLAY RECAP ***
node: ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Templates
Objective
This exercise will cover Jinja2 templating. Ansible uses Jinja2 templating to
modify files before they are distributed to managed hosts. Jinja2 is one of the
most used template engines for Python (http://jinja.pocoo.org/).

Guide
Step 1 - Using Templates in Playbooks

When a template for a file has been created, it can be deployed to the managed
hosts using the template module, which supports the transfer of a local file
from the control node to the managed hosts.

As an example of using templates you will change the motd file to contain host-
specific data.

First create the directory templates to hold template resources in
~/ansible-files/:

[student@controller ansible-files]$ mkdir templates

Then in the ~/ansible-files/templates/ directory create the template file
motd-facts.j2:

Welcome to {{ ansible_hostname }}.
{{ ansible_distribution }} {{ ansible_distribution_version}}

http://jinja.pocoo.org/

ANSIBLE - ADVANCED 45

deployed on {{ ansible_architecture }} architecture.

The template file contains the basic text that will later be copied over. It also
contains variables which will be replaced on the target machines individually.

Next we need a playbook to use this template. In the ~/ansible-files/ direc-
tory create the Playbook motd-facts.yml:

- name: Fill motd file with host data
hosts: node
become: True
tasks:

- ansible.builtin.template:
src: motd-facts.j2
dest: /etc/motd
owner: root
group: root
mode: 0644

You have done this a couple of times by now:

• Understand what the Playbook does.
• Execute the Playbook motd-facts.yml.
• Login to node via SSH and check the message of the day content.
• Log out of node.

You should see how Ansible replaces the variables with the facts it discovered
from the system.

Step 2 - Challenge Lab

Add a line to the template to list the current kernel of the managed node.

• Find a fact that contains the kernel version using the commands you
learned in the “Ansible Facts” chapter.

Tip

filter for kernel

Run the newly created playbook to find the fact name.

• Change the template to use the fact you found.

• Run the motd playbook again.

• Check motd by logging in to node

Warning

Solution below!

• Find the fact:

- name: Capture Kernel Version
hosts: node

ANSIBLE - ADVANCED 46

tasks:
- name: Collect only kernel facts
ansible.builtin.setup:
filter:

- '*kernel'
register: setup

- ansible.builtin.debug:
var: setup

With the wildcard in place, the output shows:

TASK [debug] ***
ok: [node1] => {

"setup": {
"ansible_facts": {

"ansible_kernel": "4.18.0-513.11.1.el8_9.ppc64le"
},
"changed": false,
"failed": false

}
}

With this we can conclude the variable we are looking for is labeled
ansible_kernel.

Then we can update the motd-facts.j2 template to include ansible_kernel as
part of its message.

• Modify the template motd-facts.j2:

Welcome to {{ ansible_hostname }}.
{{ ansible_distribution }} {{ ansible_distribution_version}}
deployed on {{ ansible_architecture }} architecture
running kernel {{ ansible_kernel }}.

• Run the playbook.

[student@controller ~]$ ansible-navigator run motd-facts.yml -m stdout

• Verify the new message via SSH login to node.

[student@controller ~]$ ssh 10.3.48.[100+PARTICIPANT_ID]
Welcome to node.
RedHat 8.9
deployed on ppc64le architecture
running kernel 4.18.0-513.11.1.el8_9.ppc64le.

Roles - Making your playbooks reusable
Objective
While it is possible to write a playbook in one file as we’ve done throughout this
workshop, eventually you’ll want to reuse files and start to organize things.

ANSIBLE - ADVANCED 47

Ansible Roles are the way we do this. When you create a role, you deconstruct
your playbook into parts and those parts sit in a directory structure. This is
explained in more details in the Tips and tricks and the Sample Ansible setup.

This exercise will cover:

• the folder structure of an Ansible Role
• how to build an Ansible Role
• creating an Ansible Play to use and execute a role
• using Ansible to create a Apache VirtualHost on node

Guide
Step 1 - Understanding the Ansible Role Structure

Roles follow a defined directory structure; a role is named by the top level
directory. Some of the subdirectories contain YAML files, named main.yml.
The files and templates subdirectories can contain objects referenced by the
YAML files.

An example project structure could look like this, the name of the role would
be “apache”:

apache/
��� defaults
� ��� main.yml
��� files
��� handlers
� ��� main.yml
��� meta
� ��� main.yml
��� README.md
��� tasks
� ��� main.yml
��� templates
��� tests
� ��� inventory
� ��� test.yml
��� vars

��� main.yml

The various main.yml files contain content depending on their location in the
directory structure shown above. For instance, vars/main.yml references vari-
ables, handlers/main.yaml describes handlers, and so on. Note that in contrast
to playbooks, the main.yml files only contain the specific content and not addi-
tional playbook information like hosts, become or other keywords.

Tip

There are actually two directories for variables: vars and default.
Default variables, defaults/main.yml, have the lowest precedence
and usually contain default values set by the role authors and are
often used when it is intended that their values will be overridden.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html

ANSIBLE - ADVANCED 48

Variables set in vars/main.yml are for variables not intended to be
modified.

Using roles in a Playbook is straight forward:

- name: launch roles
hosts: web
roles:

- role1
- role2

For each role, the tasks, handlers and variables of that role will be included in
the Playbook, in that order. Any copy, script, template, or include tasks in
the role can reference the relevant files, templates, or tasks without absolute or
relative path names. Ansible will look for them in the role’s files, templates, or
tasks respectively, based on their use.

Step 2 - Create a Basic Role Directory Structure

Ansible looks for roles in a subdirectory called roles in the project directory.
This can be overridden in the Ansible configuration. Each role has its own
directory. To ease creation of a new role the tool ansible-galaxy can be used.

Tip

Ansible Galaxy is your hub for finding, reusing and sharing the best
Ansible content. ansible-galaxy helps to interact with Ansible
Galaxy. For now we’ll just using it as a helper to build the directory
structure.

Okay, lets start to build a role. We’ll build a role that installs and configures
Apache to serve a virtual host. Run these commands in your ~/ansible-files
directory:

[student@controller ansible-files]$ mkdir roles
[student@controller ansible-files]$ ansible-galaxy init --offline roles/apache_vhost

Have a look at the role directories and their content:

[student@controller ansible-files]$ tree roles

roles/
��� apache_vhost

��� defaults
� ��� main.yml
��� files
��� handlers
� ��� main.yml
��� meta
� ��� main.yml
��� README.md
��� tasks
� ��� main.yml
��� templates

ANSIBLE - ADVANCED 49

��� tests
� ��� inventory
� ��� test.yml
��� vars

��� main.yml

Step 3 - Create the Tasks File

The main.yml file in the tasks subdirectory of the role should do the following:

• Make sure httpd is installed
• Make sure httpd is started and enabled
• Put HTML content into the Apache document root
• Install the template provided to configure the vhost

WARNING

The main.yml (and other files possibly included by
main.yml) can only contain tasks, not complete playbooks!

Edit the roles/apache_vhost/tasks/main.yml file:

- name: install httpd
ansible.builtin.yum:
name: httpd
state: latest

- name: start and enable httpd service
ansible.builtin.service:
name: httpd
state: started
enabled: true

Note that here just tasks were added. The details of a playbook are not present.

The tasks added so far do:

• Install the httpd package using the yum module
• Use the service module to enable and start httpd

Next we add two more tasks to ensure a vhost directory structure and copy
html content:

- name: ensure vhost directory is present
ansible.builtin.file:
path: "/var/www/vhosts/{{ ansible_hostname }}"
state: directory

- name: deliver html content
ansible.builtin.copy:
src: web.html
dest: "/var/www/vhosts/{{ ansible_hostname }}/index.html"

Note that the vhost directory is created/ensured using the file module.

ANSIBLE - ADVANCED 50

The last task we add uses the template module to create the vhost configuration
file from a j2-template:

- name: template vhost file
ansible.builtin.template:
src: vhost.conf.j2
dest: /etc/httpd/conf.d/vhost.conf
owner: root
group: root
mode: 0644

notify:
- restart_httpd

Note it is using a handler to restart httpd after an configuration update.

The full tasks/main.yml file is:

- name: install httpd
ansible.builtin.yum:
name: httpd
state: latest

- name: start and enable httpd service
ansible.builtin.service:
name: httpd
state: started
enabled: true

- name: ensure vhost directory is present
ansible.builtin.file:
path: "/var/www/vhosts/{{ ansible_hostname }}"
state: directory

- name: deliver html content
ansible.builtin.copy:
src: web.html
dest: "/var/www/vhosts/{{ ansible_hostname }}/index.html"

- name: template vhost file
ansible.builtin.template:
src: vhost.conf.j2
dest: /etc/httpd/conf.d/vhost.conf
owner: root
group: root
mode: 0644

notify:
- restart_httpd

ANSIBLE - ADVANCED 51

Step 4 - Create the handler

Create the handler in the file roles/apache_vhost/handlers/main.yml to
restart httpd when notified by the template task:

handlers file for roles/apache_vhost
- name: restart_httpd
ansible.builtin.service:
name: httpd
state: restarted

Step 5 - Create the web.html and vhost configuration file template

Create the HTML content that will be served by the webserver.

• Create an web.html file in the “src” directory of the role, files:

#> echo 'simple vhost index' > ~/ansible-files/roles/apache_vhost/files/web.html

• Create the vhost.conf.j2 template file in the role’s templates subdirec-
tory.

The contents of the vhost.conf.j2 template file are found below.

{{ ansible_managed }}

<VirtualHost *:8080>
ServerAdmin webmaster@{{ ansible_fqdn }}
ServerName {{ ansible_fqdn }}
ErrorLog logs/{{ ansible_hostname }}-error.log
CustomLog logs/{{ ansible_hostname }}-common.log common
DocumentRoot /var/www/vhosts/{{ ansible_hostname }}/

<Directory /var/www/vhosts/{{ ansible_hostname }}/>
Options +Indexes +FollowSymlinks +Includes
Order allow,deny
Allow from all
</Directory>

</VirtualHost>

Step 6 - Test the role

You are ready to test the role against node. But since a role cannot be assigned
to a node directly, first create a playbook which connects the role and the host.
Create the file test_apache_role.yml in the directory ~/ansible-files:

- name: use apache_vhost role playbook
hosts: node
become: True
pre_tasks:

- ansible.builtin.debug:
msg: 'Beginning web server configuration.'

ANSIBLE - ADVANCED 52

roles:
- apache_vhost

post_tasks:
- ansible.builtin.debug:

msg: 'Web server has been configured.'

Note the pre_tasks and post_tasks keywords. Normally, the tasks of roles
execute before the tasks of a playbook. To control order of execution pre_tasks
are performed before any roles are applied. The post_tasks are performed after
all the roles have completed. Here we just use them to better highlight when
the actual role is executed.

Now you are ready to run your playbook:

[student@controller ansible-files]$ ansible-navigator run test_apache_role.yml

Run a curl command against node to confirm that the role worked:

[student@controller ansible-files]$ curl -s http://10.3.48.[100+PARTICIPANT_ID]:8080
simple vhost index

Congratulations! You have successfully completed this exercise!

Troubleshooting problems
Did the final curl work? You can see what ports the web server is running by
using the ss command:

#> sudo ss -tulpn | grep httpd

There should be a line like this:

tcp LISTEN 0 511 *:8080 *:* users:(("httpd",pid=182567,fd=4),("httpd",pid=182566,fd=4),("httpd",pid=182565,fd=4),("httpd",pid=182552,fd=4))

Pay close attention to the fifth column of the above output. It should be
*:8080. If it is *:80 instead or if it is not working, then make sure that the
/etc/httpd/conf/httpd.conf file has Listen 8080 in it. This should have
been changed by Exercise 1.5

../1.5-handlers

	Ansible
	Check the Prerequisites
	Objective
	Guide

	The Ansible Basics
	Objective
	Guide

	Writing Your First Playbook
	Objective
	Guide

	Using Variables
	Objective
	Guide

	AAP
	Introduction to Ansible automation controller
	What's New in Ansible automation controller 4.0
	Objective
	Guide

	Workshop Exercise - Inventories, credentials and ad hoc commands
	Objective
	Guide

	Workshop Exercise - Projects & Job Templates
	Objective
	Guide

	Workshop Exercise - Role-based access control
	Objective
	Guide

	Ansible - advanced
	Conditionals, Handlers and Loops
	Objective
	Guide

	Templates
	Objective
	Guide

	Roles - Making your playbooks reusable
	Objective
	Guide
	Troubleshooting problems

