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Disclaimer

This is an introductory session. Further sessions

• 13:45 - Bootable Container: si installa come Linux, si gestisce come un container
(U6-39)

• 13:45 - OSTree for fun and profit (U6-41)
• 13:45 - Un nuovo approccio al self-hosting: purpose-built hardware e NixOS

(U6-42)

or

• 13:45 - Dal cloud al self-hosting (U6-40)
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About me

• IT user since 1996.
• Working in IT since 2004.
• Fedora core developer since 2010.
• Immutable linux user since 2016.
• Fedora Sway Atomic maintainer since 2022.
• EMEA Principal Specialist Solution Architect @ Red Hat
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History



History

• 1988 - POSIX supports “read-only” file systems.
• 2003 - Eelco Dolstra started Nix as a research project.
• 2006 - Armijn Hemel presented NixOS as the result of his Master’s thesis at

Utrecht.
• 2013 - Docker make popular the idea of immutable containers.
• 2013 - Alex Polvi creates CoreOS.
• 2014 - Red Hat creates Project Atomic.
• 2015 - The NixOS Foundation was founded.
• 2018 - Red Hat acquires CoreOS.
• 2024 - Red Hat announces bootc.
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How does it work?



Definitions

• Container: a lightweight, standalone, executable package that includes everything
needed to run an application—code, runtime, libraries, and dependencies.

• OCI container: containers that adhere to a set of standards defined by the Open
Container Initiative. The OCI was established in 2015 to standardize container
technology to improve compatibility, portability, and interoperability across
different environments.

• Snap: A universal package format developed by Canonical (the makers of
Ubuntu) that allows applications to run in an isolated environment across different
Linux distributions.

• Flatpak: A framework for building, distributing, and running sandboxed desktop
applications on Linux.
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How does immutable Linux work?

• OS filesystem is (mostly) Read-Only.
• OS updates are atomic.
• The OS filesystem can be reverted to previous states.
• User environments and applications run in isolated, layered containers.
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Different kinds of immutable Linux

• NixOS
• CoreOS
• Project Atomic
• Fedora Atomic
• Bootc
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NixOS Overview

• Declarative configuration: Entire system configuration defined in a single file
(configuration.nix).

• Reproducibility: Ensures identical system builds across different environments.
• Atomic upgrades & rollbacks: Safe, atomic updates with easy rollback to

previous states.
• Isolation of dependencies: Packages and environments are isolated to avoid

conflicts.
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CoreOS Overview

• Container-optimized: Built specifically for running containers at scale, with
minimal OS services.

• Automatic, atomic updates: Uses coreos-update-engine for automatic,
atomic OS updates.

• Security-first: Immutable file system, no package manager; reduces attack
surface.

• etcd for distributed configuration: Includes etcd for distributed configuration
management in clusters.

• Kubernetes integration: CoreOS soon pivoted to support large Kubernetes
clusters.
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Project Atomic Overview

• Hybrid environment: Designed to run both traditional RPM-based applications
and containerized applications.

• OSTree for updates: Used OSTree for atomic updates and rollback.
• Containerized workloads: Supported running containerized apps alongside

traditional apps.
• Part of OpenShift: Concepts from Project Atomic were later integrated into Red

Hat OpenShift.
• Transitioned to Fedora Atomic: Ideas and technology fed into modern Fedora

Atomic.
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Fedora Atomic Overview

• Multiple artifacts sharing the same ideas:
• Fedora Silverblue, Fedora Kinoite, Fedora Sway Atomic, Fedora Budgie Atomic
• Fedora CoreOS
• Fedora IoT

• Atomic updates: Uses OSTree for atomic system updates.
• Flatpak for Applications: Application installations are handled via Flatpak,

ensuring isolation and easy updates.
• Reproducible & Stable: Provides a consistent environment for development,

without configuration drift.
• Rollback feature: Easily revert to previous system states if updates cause issues.
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Bootc Overview

• Container: Full operating systeim in a container image.
• Practices & tooling: Standard container practices and tooling.
• Atomic updates: The system updates atomically.
• Rollback feature: Easily revert to previous system states if updates cause issues.
• State (including per-machine configuration): Preserved across updates.
• Factory reset: Always possible to discard all state.
• Cryptographic trust chain: Cryptographically verify from the hardware, through

the boot loader and OS to applications.
• Usage: Potential base for future Fedora (and derived) distributions.
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Benefits and limits



Key benefits

• Enhanced stability: No unexpected changes to core system files.
• Security: Reduced attack surface since OS files are immutable.
• Consistency: Guaranteed uniformity across systems; no “configuration drift”.
• Easy rollback: Can easily roll back updates or changes to a previous,

known-good state.
• Simplified updates: Atomic updates ensure the whole system updates in one

operation, reducing potential for broken dependencies.
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Potential limitations

• Less flexibility: Users can’t easily modify or customize the system core.
• Kernel modules: Often Kernel modules are not changeable.
• Learning curve: Requires knowledge of containerized environments or different

package management.
• Limited software availability: Some traditional packages or workflows may not

be supported without workarounds.
• More complexity in application management: Applications are often

containerized, adding overhead to system setup.
• Automation: Often “classical” automation approaches (Ansible, Puppet, etc)

break.
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Usecases and options



Use cases

• Servers and Infrastructure: Ensures stability and easy rollback for
system-critical applications.

• Edge Devices/IoT: Ideal for systems with limited administrative control.
• Desktop Users: For those seeking a stable, minimal environment with less risk of

corruption or breaking.
• Desktop Management: Deploy, manage, and support massive amount of users

easily.
• Development Environments: Consistent and reproducible systems for building

and testing software.
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Current options available

• Fedora Silverblue: A leading immutable desktop environment with a focus on
containerized applications via Flatpak.

• Bluefin: Similar to Silverblue but developed by differente developers with only
focus on desktop environments.

• NixOS: Not fully immutable by default, but Nix package manager allows
declarative, reproducible system configurations.

• Vanilla OS: New project aiming at providing an easy-to-use immutable Linux
distribution for desktop users.

• Endless OS: Aimed at educational environments, it uses an immutable file system
to ensure stability and simplicity.

• Fedora IoT: Designed for IoT and embedded systems.
• Ubuntu Core: Designed for IoT and embedded systems with snap-based

packages. 16



Wrapping up



Wrapping up

• Immutable Linux offers a reliable, secure, and stable operating environment at the
cost of flexibility.

• It’s growing in popularity with options like Fedora Silverblue, NixOS, and Fedora
IoT leading the way.

• Ideal for: Developers, power users, infrastructure management, and anyone who
prioritizes system stability or security over customizability.
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Questions?
Email: mail@fale.io

Fediverse: @fale@fale.io
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Links

• https://projectatomic.io

• https://fedoraproject.org/coreos

• https://nixos.org

• https://containers.github.io/bootable
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