
CEC 2025
Automating Power Virtual Servers with Ansible

part 2

Fabio Alessandro “Fale” Locati

v2025-06-01

Contents

Ansible 2
Check the Prerequisites . 2

Objective . 2
Guide . 2

The Ansible Basics . 5
Objective . 5
Guide . 5

Writing Your First Playbook . 10
Objective . 10
Guide . 10

Using Variables . 18
Objective . 19
Guide . 19

1

Ansible

Check the Prerequisites
Objective

• Understand the lab topology and how to access the environment.

• Understand how to work the workshop exercises

• Understand challenge labs

These first few lab exercises will be exploring the command-line utilities of the
Ansible Automation Platform. This includes:

• ansible-navigator - a command line utility and text-based user interface
(TUI) for running and developing Ansible automation content.

• ansible-core - the base executable that provides the framework, language
and functions that underpin the Ansible Automation Platform. It also in-
cludes various cli tools like ansible, ansible-playbook and ansible-doc.
Ansible Core acts as the bridge between the upstream community with the
free and open source Ansible and connects it to the downstream enterprise
automation offering from Red Hat, the Ansible Automation Platform.

• Execution Environments - not specifically covered in this workshop be-
cause the built-in Ansible Execution Environments already included all
the Red Hat supported collections which includes all the collections we
use for this workshop. Execution Environments are container images that
can be utilized as Ansible execution.

• ansible-builder - not specifically covered in this workshop, ansible-builder
is a command line utility to automate the process of building Execution
Environments.

If you need more information on new Ansible Automation Platform components
bookmark this landing page https://red.ht/AAP-20

Guide
Your Lab Environment

In this lab you work in a pre-configured lab environment. You will have access
to the following hosts:

2

https://github.com/ansible/ansible-navigator
https://docs.ansible.com/core.html
https://docs.ansible.com/automation-controller/latest/html/userguide/execution_environments.html
https://github.com/ansible/ansible-builder
https://red.ht/AAP-20

ANSIBLE 3

Role Inventory name
Ansible Control Host 150.239.19.229
Managed Host [PARTICIPANT_MACHINE_IP]

Step 1 - Access the Environment

You can access the environment, by connecting via SSH to the Ansible Control
Host:

ssh USER@150.239.19.229

Step 2 - Using the Terminal

Create and navigate to the rhel-workshop directory on the Ansible control
node terminal.

[student@controller ~] mkdir ~/rhel-workshop/
[student@controller ~] cd /rhel-workshop/
[student@controller rhel-workshop]$ pwd
/home/student/rhel-workshop
[student@controller rhel-workshop]$

• ~ - the tilde in this context is a shortcut for the home directory,
i.e. /home/student

• mkdir - Linux command to create a directory
• cd - Linux command to change directory
• pwd - Linux command for print working directory. This will show the full

path to the current working directory.

Step 3 - Examining Execution Environments

Run the ansible-navigator command with the images argument to look at
execution environments configured on the control node:

$ ansible-navigator images

Figure 1: ansible-navigator images

Note: The output you see might differ from the above output

ANSIBLE 4

This command gives you information about all currently installed Execution
Environments or EEs for short. Investigate an EE by pressing the correspond-
ing number. For example pressing 2 with the above example will open the
ee-supported-rhel8 execution environment:

Figure 2: ee main menu

Selecting 2 for Ansible version and collections will show us all Ansible
Collections installed on that particular EE, and the version of ansible-core:

Figure 3: ee info

Step 4 - Examining the ansible-navigator configuration

Either use Visual Studio Code to open or use the cat command to view the
contents of the ansible-navigator.yml file. The file is located in the home
directory:

$ cat ~/.ansible-navigator.yml

ANSIBLE 5

ansible-navigator:

ansible:
inventory:

entries:
- ~/hosts

execution-environment:
image: registry.redhat.io/ansible-automation-platform-24/ee-supported-rhel8:latest
enabled: true
container-engine: podman
pull:

policy: missing
volume-mounts:
- src: /etc/ansible

dest: /etc/ansible

Note the following parameters within the .ansible-navigator.yml file:

• inventories: shows the location of the ansible inventory being used
• execution-environment: where the default execution environment is set

For a full listing of every configurable knob checkout the documentation

Step 5 - Challenge Labs

You will soon discover that many chapters in this lab guide come with a “Chal-
lenge Lab” section. These labs are meant to give you a small task to solve using
what you have learned so far. The solution of the task is shown underneath a
warning sign.

The Ansible Basics
Objective
In this exercise, we are going to explore the latest Ansible command line utility
ansible-navigator to learn how to work with inventory files and the listing
of modules when needing assistance. The goal is to familarize yourself with
how ansible-navigator works and how it can be used to enrich your Ansible
experience.

This exercise will cover

• Working with inventory files
• Locating and understanding an ini formatted inventory file
• Listing modules and getting help when trying to use them

Guide
Step 1 - Work with your Inventory

An inventory file is a text file that specifies the nodes that will be managed by the
control machine. The nodes to be managed may include a list of hostnames or

https://ansible.readthedocs.io/projects/navigator/settings/

ANSIBLE 6

IP addresses of those nodes. The inventory file allows for nodes to be organized
into groups by declaring a host group name within square brackets ([]).

To use the ansible-navigator command for host management, you need to
provide an inventory file which defines a list of hosts to be managed from the
control node. In this lab, the inventory is provided by your instructor. The
inventory file is an ini formatted file listing your hosts, sorted in groups, addi-
tionally providing some variables. It looks like:

[web]
node ansible_host=[PARTICIPANT__MACHINE_IP] ansible_user=s[PARTICIPANT_ID]

[control]
controller ansible_host=150.239.19.229 ansible_user=s[PARTICIPANT_ID]

Ansible is already configured to use the inventory specific to your environment.
We will show you in the next step how that is done. For now, we will execute
some simple commands to work with the inventory.

To reference all the inventory hosts, you supply a pattern to the ansible-navigator
command. ansible-navigator inventory has a --list option which can be
useful for displaying all the hosts that are part of an inventory file including
what groups they are associated with.

$ ansible-navigator inventory --list -m stdout

{
"_meta": {

"hostvars": {
"controller": {

"ansible_host": "10.3.44.1",
"ansible_user": "s22"

},
"node": {

"ansible_host": "10.3.44.122",
"ansible_user": "s22"

}
}

},
"all": {

"children": [
"ungrouped",
"web",
"control"

]
},
"control": {

"hosts": [
"controller"

]
},
"web": {

"hosts": [

ANSIBLE 7

"node"
]

}
}

NOTE: -m is short for --mode which allows for the mode to be switched to
standard output instead of using the text-based user interface (TUI).

If the --list is too verbose, the option of --graph can be used to provide a
more condensed version of --list.

$ ansible-navigator inventory --graph -m stdout

@all:
|--@ungrouped:
|--@web:
| |--node
|--@control:
| |--controller

We can clearly see that nodes: node is part of the web group, while controller
is part of the control group.

An inventory file can contain a lot more information, it can organize your hosts
in groups or define variables. In our example, the current inventory has the
groups web and control. Run Ansible with these host patterns and observe the
output:

Using the ansible-navigator inventory command, we can also run com-
mands that provide information only for one host or group. For example, give
the following commands a try to see their output.

$ ansible-navigator inventory --graph web -m stdout
$ ansible-navigator inventory --graph control -m stdout
$ ansible-navigator inventory --host node -m stdout

Tip

The inventory can contain more data. E.g. if you have hosts that
run on non-standard SSH ports you can put the port number after
the hostname with a colon. Or you could define names specific to
Ansible and have them point to the “real” IP or hostname.

Step 2 - Listing Modules and Getting Help

Ansible Automation Platform comes with multiple supported Execution En-
vironments (EEs). These EEs come with bundled supported collections that
contain supported content, including modules.

Tip

In ansible-navigator exit by pressing the button ESC.

To browse your available modules first enter interactive mode:

$ ansible-navigator

ANSIBLE 8

Figure 4: picture of ansible-navigator

First browse a collection by typing :collections

:collections

Figure 5: picture of ansible-navigator

To browse the content for a specific collections, type the corresponding number.
For example in the example screenshot above the number 0 corresponds to
amazon.aws collection. To zoom into collection type the number 0.

0

ANSIBLE 9

Figure 6: picture of ansible-navigator

Get help for a specific module including usage by zooming in further. For
example the module ec2_metadata_facts corresponds to 3.

:3

Scrolling down using the arrow keys or page-up and page-down can show us
documentation and examples.

Figure 7: picture of ansible-navigator

You can also skip directly to a particular module by simply typing

ANSIBLE 10

:doc namespace.collection.module-name. For example typing :doc
amazon.aws.ec2_metadata_facts would skip directly to the final page shown
above.

Tip

Different execution environments can have access to different col-
lections, and different versions of those collections. By using the
built-in documentation you know that it will be accurate for that
particular version of the collection.

Writing Your First Playbook
Objective
This exercise covers using Ansible to build an Apache web server on Red Hat
Enterprise Linux. This exercise covers the following Ansible fundamentals:

• Understanding Ansible module parameters
• Understanding and using the following modules

– dnf module
– service module
– copy module

• Understanding Idempotence and how Ansible modules can be idempotent

Guide
Playbooks are files which describe the desired configurations or steps to imple-
ment on managed hosts. Playbooks can change lengthy, complex administrative
tasks into easily repeatable routines with predictable and successful outcomes.

A playbook can have multiple plays and a play can have one or multiple tasks.
In a task a module is called, like the modules in the previous chapter. The goal
of a play is to map a group of hosts. The goal of a task is to implement modules
against those hosts.

Tip

Here is a nice analogy: When Ansible modules are the tools in your
workshop, the inventory is the materials and the Playbooks are the
instructions.

Step 1 - Playbook Basics

Playbooks are text files written in YAML format and therefore need:

• to start with three dashes (---)

• proper indentation using spaces and not tabs!

There are some important concepts:

• hosts: the managed hosts to perform the tasks on

https://docs.ansible.com/ansible/latest/modules/dnf_module.html
https://docs.ansible.com/ansible/latest/modules/service_module.html
https://docs.ansible.com/ansible/latest/modules/copy_module.html
https://en.wikipedia.org/wiki/Idempotence

ANSIBLE 11

• tasks: the operations to be performed by invoking Ansible modules and
passing them the necessary options

• become: privilege escalation in playbooks

Warning

The ordering of the contents within a Playbook is important, because
Ansible executes plays and tasks in the order they are presented.

A Playbook should be idempotent, so if a Playbook is run once to put the
hosts in the correct state, it should be safe to run it a second time and it should
make no further changes to the hosts.

Tip

Most Ansible modules are idempotent, so it is relatively easy to
ensure this is true.

Step 2 - Creating a Directory Structure and File for your Playbook

Enough theory, it’s time to create your first Ansible playbook. In this lab you
create a playbook to set up an Apache web server in three steps:

1. Install httpd package
2. Enable/start httpd service
3. Copy over an web.html file to each web host

This Playbook makes sure the package containing the Apache web server is
installed on node.

There is a best practice on the preferred directory structures for playbooks. We
strongly encourage you to read and understand these practices as you develop
your Ansible ninja skills. That said, our playbook today is very basic and
creating a complex structure will just confuse things.

Instead, we are going to create a very simple directory structure for our playbook,
and add just a couple of files to it.

On your control host ansible, create a directory called ansible-files in your
home directory and change directories into it:

$ mkdir ansible-files
$ cd ansible-files

Add a file called apache.yml with the following content. As discussed in the
previous exercises, use vi/vim or nano.

- name: Apache server installed

hosts: node
become: True

This shows one of Ansible’s strengths: The Playbook syntax is easy to read and
understand. In this Playbook:

• A name is given for the play via name:.
• The host to run the playbook against is defined via hosts:.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

ANSIBLE 12

• We enable user privilege escalation with become:.

Tip

You obviously need to use privilege escalation to install a package
or run any other task that requires root permissions. This is done
in the Playbook by become: yes.

Now that we’ve defined the play, let’s add a task to get something done. We
will add a task in which dnf will ensure that the Apache package is installed in
the latest version. Modify the file so that it looks like the following listing:

- name: Apache server installed

hosts: node
become: True
tasks:
- name: Install Apache

ansible.builtin.dnf:
name: httpd

Tip

Since playbooks are written in YAML, alignment of the lines and
keywords is crucial. Make sure to vertically align the t in task with
the b in become. Once you are more familiar with Ansible, make
sure to take some time and study a bit the YAML Syntax.

In the added lines:

• We started the tasks part with the keyword tasks:.
• A task is named and the module for the task is referenced. Here it uses

the dnf module.
• Parameters for the module are added:

– name: to identify the package name
– state: to define the wanted state of the package

Tip

The module parameters are individual to each module. If in doubt,
look them up again with ansible-doc.

Save your playbook and exit your editor.

Step 3 - Running the Playbook

With the introduction of Ansible Automation Platform 2, several new key com-
ponents are being introduced as a part of the overall developer experience. Exe-
cution environments have been introduced to provide predictable environments
to be used during automation runtime. All collection dependencies are con-
tained within the execution environment to ensure that automation created in
development environments runs the same as in production environments.

What do you find within an execution environment?

• RHEL UBI 8

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

ANSIBLE 13

• Ansible 2.9 or Ansible Core 2.11
• Python 3.8
• Any content Collections
• Collection python or binary dependencies.

Why use execution environments?

They provide a standardized way to define, build and distribute the environ-
ments that the automation runs in. In a nutshell, Automation execution envi-
ronments are container images that allow for easier administration of Ansible
by the platform administrator.

Considering the shift towards containerized execution of automation, automa-
tion development workflow and tooling that existed before Ansible Automation
Platform 2 have had to be reimagined. In short, ansible-navigator replaces
ansible-playbook and other ansible-* command line utilities.

With this change, Ansible playbooks are executed using the ansible-navigator
command on the control node.

The prerequisites and best practices for using ansible-navigator have been
done for you within this lab.

These include:

• Installing the ansible-navigator package
• Creating a default settings ~/.ansible-navigator.yml for all your

projects (optional)
• All execution environment (EE) logs are stored within the execution folder

For more information on the Ansible navigator settings

Tip

The parameters for ansible-navigator maybe modified for
your specific environment. The current settings use a de-
fault ansible-navigator.yml for all projects, but a specific
ansible-navigator.yml can be created for each project and is the
recommended practice.

To run your playbook, use the ansible-navigator run <playbook> command
as follows:

$ ansible-navigator run apache.yml

Tip

The existing ansible-navigator.yml file provides the loca-
tion of your inventory file. If this was not set within your
ansible-navigator.yml file, the command to run the playbook
would be: ansible-navigator run apache.yml -i ~/hosts

When running the playbook, you’ll be displayed a text user interface (TUI)
that displays the play name among other information about the playbook that
is currently run.

Play name Ok Changed Unreachable^^I Failed Skipped Ignored In progress Task count Progress
0�Apache server installed 2 1 0 0 0 0 0 2 Complete

https://github.com/ansible/ansible-navigator/blob/main/docs/settings.rst

ANSIBLE 14

If you notice, prior to the play name Apache server installed, you’ll see a
0. By pressing the 0 key on your keyboard, you will be provided a new window
view displaying the different tasks that ran for the playbook completion. In this
example, those tasks included the “Gathering Facts” and “Install Apache”. The
“Gathering Facts” is a built-in task that runs automatically at the beginning of
each play. It collects information about the managed nodes. Exercises later on
will cover this in more detail. The “Install Apache” was the task created within
the apache.yml file that installed httpd.

The display should look something like this:

Result Host Number Changed Task Task action Duration
0�Ok node 0 False Gathering Facts gather_facts 2s
1�Ok node 1 True Install Apache ansible.builtin.dnf 23s

Taking a closer look, you’ll notice that each task is associated with a number.
Task 1, “Install Apache”, had a change and used the dnf module. In this case,
the change is the installation of Apache (httpd package) on the host node.

By pressing 0 or 1 on your keyboard, you can see further details of the task
being run. If a more traditional output view is desired, type :st within the text
user interface.

Once you’ve completed, reviewing your Ansible playbook, you can exit out of
the TUI via the Esc key on your keyboard.

Tip

The Esc key only takes you back to the previous screen. Once at
the main overview screen an additional Esc key will take you back
to the terminal window.

Once the playbook has completed, connect to node via SSH to make sure Apache
has been installed:

$ ssh root@10.3.44.[100+PARTICIPANT_ID]

Use the command rpm -qi httpd to verify httpd is installed:

Name : httpd
Version : 2.4.62
Release : 4.el9
Architecture: ppc64le
[...]

Log out of node with the command exit so that you are back on the control host
and verify the installed package with an Ansible playbook labeled package.yml

- name: Check packages

hosts: node
become: True
vars:

p: httpd
tasks:
- name: Gather the packages fact

ANSIBLE 15

ansible.builtin.package_facts:
manager: auto

- name: "Check whether {{ p }} is installed"
ansible.builtin.debug:

msg: "{{ p }} {{ ansible_facts.packages[p][0].version }} is installed!"
when: p in ansible_facts.packages

You can now run it similarly to the previous one:

$ ansible-navigator run package.yml -m stdout

PLAY [Check packages] **

TASK [Gathering Facts] ***
ok: [node]

TASK [Gather the packages fact] **
ok: [node]

TASK [Check whether httpd is installed] **
ok: [node] => {

"msg": "httpd 2.4.62 is installed!"
}

PLAY RECAP ***
node : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Run the the ansible-navigator run apache.yml playbook for a second time,
and compare the output. The output “CHANGED” now shows 0 instead of 1
and the color changed from yellow to green. This makes it easier to spot when
changes have occured when running the Ansible playbook.

Step 4 - Extend your Playbook: Start & Enable Apache

The next part of the Ansible playbook makes sure the Apache application is
enabled and started on node.

On the control host, as your student user, edit the file ~/ansible-files/apache.yml
to add a second task using the service module. The Playbook should now
look like this:

- name: Apache server installed

hosts: node
become: True
tasks:
- name: Install Apache

ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:

name: httpd

ANSIBLE 16

enabled: True
state: started

What exactly did we do?

• a second task named “Apache enabled and running” is created
• a module is specified (service)
• The module service takes the name of the service (httpd), if it should

be permanently set (enabled), and its current state (started)

Thus with the second task we make sure the Apache server is indeed running
on the target machine. Run your extended Playbook:

$ ansible-navigator run apache.yml

Notice in the output, we see the play had 1 “CHANGED” shown in yellow
and if we press 0 to enter the play output, you can see that task 2, “Apache
enabled and running”, was the task that incorporated the latest change by the
“CHANGED” value being set to True and highlighted in yellow.

• Run the playbook a second time using ansible-navigator to get used to
the change in the output.

• Use an Ansible playbook labeled service_state.yml to make sure the
Apache (httpd) service is running on node, e.g. with: systemctl status
httpd.

- name: Check Status

hosts: node
become: True
vars:

package: httpd
tasks:
- name: "Check status of {{ package }} service"

ansible.builtin.service_facts:
register: service_state

- ansible.builtin.debug:
var: service_state.ansible_facts.services["{{ package }}.service"].state

$ ansible-navigator run service_state.yml -m stdout

Step 5 - Extend your Playbook: Create an web.html

Check that the tasks were executed correctly and Apache is accepting connec-
tions: Make an HTTP request using Ansible’s uri module in a playbook named
check_httpd.yml from the control node to node.

- name: Check URL

hosts: localhost
vars:

node: "[YOUR NODE IP ADDRESS]"
tasks:
- name: Check that you can connect (GET) to a page and it returns a status 200

ANSIBLE 17

ansible.builtin.uri:
url: "http://{{ node }}"

Warning: Expect a lot of red lines!

$ ansible-navigator run check_httpd.yml -m stdout

There are a lot of red lines and an error: As long as there is not at least an
web.html file to be served by Apache, it will throw an ugly “HTTP Error 403:
Forbidden” status and Ansible will report an error. Also, you are not even
seeing the 403 error, since the node port 80 is not reachable due to firewalld’s
configuration which does not allow connections to be allowed.

Let’s start fixing this last issue. To do so, we’ll alter the apache.yml file in the
following way:

- name: Apache server installed

hosts: node
become: True
tasks:
- name: Install Apache

ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:

name: httpd
enabled: True
state: started

- name: Open firewall port
ansible.posix.firewalld:

service: http
immediate: True
permanent: True
state: enabled

What does this new task do? The new task uses the firewalld module and
defines the service option (HTTP standard port is 80/tcp) and the state enabled.
Due to how the firewalld utility works, we need to tell Ansible that we want
the new port to be immediately available and configured in the same way even
after reboot (with the permanent option).

Run your extended Playbook:

$ ansible-navigator run apache.yml -m stdout

Now that we have opened the port, you can re-run the check_httpd.yml play-
book and see that we now get the 403 error.

So why not use Ansible to deploy a simple web.html file? On the ansible control
host, as the student user, create the directory files to hold file resources in
~/ansible-files/:

$ mkdir files

Then create the file ~/ansible-files/files/web.html on the control node:

ANSIBLE 18

<body>
<h1>Apache is running fine</h1>

</body>

In a previous example, you used Ansible’s copy module to write text supplied
on the command line into a file. Now you’ll use the module in your playbook
to copy a file.

On the control node as your student user edit the file ~/ansible-files/apache.yml
and add a new task utilizing the copy module. It should now look like this:

- name: Apache server installed

hosts: node
become: True
tasks:
- name: Install Apache

ansible.builtin.dnf:
name: httpd

- name: Apache enabled and running
ansible.builtin.service:

name: httpd
enabled: True
state: started

- name: Open firewall port
ansible.posix.firewalld:

service: http
immediate: True
permanent: True
state: enabled

- name: Copy index.html
ansible.builtin.copy:

src: web.html
dest: /var/www/html/index.html
mode: '644'

What does this new copy task do? The new task uses the copy module and
defines the source and destination options for the copy operation as parameters.

Run your extended Playbook:

$ ansible-navigator run apache.yml -m stdout

• Have a good look at the output, notice the changes of “CHANGED” and
the tasks associated with that change.

• Run the Ansible playbook check_httpd.yml using the uri module from
above again to test Apache. The command should now return a friendly
green “status: 200” line, amongst other information.

Using Variables

ANSIBLE 19

Objective
Ansible supports variables to store values that can be used in Ansible playbooks.
Variables can be defined in a variety of places and have a clear precedence.
Ansible substitutes the variable with its value when a task is executed.

This exercise covers variables, specifically

• How to use variable delimiters {{ and }}
• What host_vars and group_vars are and when to use them
• How to use ansible_facts
• How to use the debug module to print variables to the console window

Guide
Intro to Variables

Variables are referenced in Ansible Playbooks by placing the variable name in
double curly braces:

Here comes a variable {{ variable1 }}

Variables and their values can be defined in various places: the inventory, addi-
tional files, on the command line, etc.

The recommended practice to provide variables in the inventory is to define
them in files located in two directories named host_vars and group_vars:

• To define variables for a group “servers”, a YAML file named
group_vars/servers.yml with the variable definitions is created.

• To define variables specifically for a host node, the file host_vars/node.yml
with the variable definitions is created.

Tip

Host variables take precedence over group variables (more about
precedence can be found in the docs).

Step 1 - Create Variable Files

For understanding and practice let’s do a lab. Following up on the theme “Let’s
build a web server. Or two. Or even more…”, you will change the index.html
to show the development environment (dev/prod) a server is deployed in.

On the ansible control host, as the student user, create the directories to hold
the variable definitions in ~/ansible-files/:

$ mkdir host_vars group_vars

Now create two files containing variable definitions. We’ll define a variable
named stage which will point to different environments, dev or prod:

• Create the file ~/ansible-files/group_vars/web.yml with this content:

stage: dev

• Create the file ~/ansible-files/host_vars/node.yml with this content:

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

ANSIBLE 20

stage: prod

What is this about?

• For all servers in the web group the variable stage with value dev is
defined. So as default we flag them as members of the dev environment.

• For server node this is overridden and the host is flagged as a production
server. In our case, the web group only contains node, but if it contained
multiple nodes the difference would be more obvious.

Step 2 - Create web.html Files

Now create two files in ~/ansible-files/files/:

One called prod_web.html with the following content:

<body>
<h1>This is a production webserver, take care!</h1>

</body>

And the other called dev_web.html with the following content:

<body>
<h1>This is a development webserver, have fun!</h1>

</body>

Step 3 - Create the Playbook

Now you need a Playbook that copies the prod or dev web.html file - according
to the “stage” variable.

Create a new Playbook called deploy_index_html.yml in the ~/ansible-files/
directory.

Tip

Note how the variable “stage” is used in the name of the file to copy.

- name: Copy web.html

hosts: web
become: True
tasks:
- name: Copy web.html

ansible.builtin.copy:
src: "{{ stage }}_web.html"
dest: /var/www/html/index.html

• Run the Playbook:

$ ansible-navigator run deploy_index_html.yml

Step 4 - Test the Result

The Ansible Playbook copies different files as index.html to the hosts, use curl
to test it.

ANSIBLE 21

For node:

curl http://[10.3.48.[100+PARTICIPANT_ID]
<body>
<h1>This is a production webserver, take care!</h1>

</body>

Tip

You can remove the ~/ansible-files/host_vars/node.yml file
and see that by re-running the Ansible playbook, the deployed page
will change.

Tip

If by now you think: There has to be a smarter way to change content
in files… you are absolutely right. This lab was done to introduce
variables, you are about to learn about templates in one of the future
labs.

Step 5 - Ansible Facts

Ansible facts are variables that are automatically discovered by Ansible from a
managed host. Remember the “Gathering Facts” task listed in the output of
each ansible-navigator execution? At that moment the facts are gathered
for each managed nodes. Facts can also be pulled by the setup module. They
contain useful information stored into variables that administrators can reuse.

To get an idea what facts Ansible collects by default, on your control node as
your student user run the following playbook called setup.yml to get the setup
details of node:

- name: Capture Setup

hosts: node
tasks:
- name: Collect only facts returned by facter

ansible.builtin.setup:
gather_subset:

- all
register: setup

- ansible.builtin.debug:
var: setup

$ cd ~
$ ansible-navigator run setup.yml -m stdou
\begin{Shaded}

This might be a bit too much, you can use filters to limit the output to
certain facts, the expression is shell-style wildcard within your
playbook. Create a playbook labeled \texttt{setup_filter.yml} as shown
below. In this example, we filter to get the \texttt{eth0} facts as well
as memory details of \texttt{node}.

ANSIBLE 22

\begin{minted}{yaml}

- name: Capture Setup
hosts: node
tasks:
- name: Collect only specific facts
ansible.builtin.setup:
filter:
- 'ansible_eth0'
- 'ansible_*_mb'

register: setup
- debug:

var: setup

$ ansible-navigator run setup_filter.yml -m stdout

Step 6 - Challenge Lab: Facts

• Try to find and print the distribution (Red Hat) of your managed hosts
using a playbook.

Tip

Use the wildcard to find the fact within your filter, then apply a
filter to only print this fact.

Warning

Solution below!

- name: Capture Setup

hosts: node
tasks:
- name: Collect only specific facts

ansible.builtin.setup:
filter:

- '*distribution'
register: setup

- ansible.builtin.debug:
var: setup

With the wildcard in place, the output shows:

TASK [debug] ***
ok: [ansible] => {

"setup": {
"ansible_facts": {

"ansible_distribution": "RedHat"
},
"changed": false,
"failed": false

}
}

ANSIBLE 23

With this we can conclude the variable we are looking for is labeled
ansible_distribution.

Then we can update the playbook to be explicit in its findings and change the
following line:

filter:
- '*distribution'

to:

filter:
- 'ansible_distribution'

$ ansible-navigator run setup_filter.yml -m stdout

Step 7 - Using Facts in Playbooks

Facts can be used in a Playbook like variables, using the proper naming, of
course. Create this Playbook as facts.yml in the ~/ansible-files/ directory:

- name: Output facts within a playbook

hosts: node
tasks:
- name: Prints Ansible facts

ansible.builtin.debug:
msg: The IPv4 address of {{ ansible_fqdn }} is {{ ansible_default_ipv4.address }}

Tip

The “debug” module is handy for e.g. debugging variables or expres-
sions.

Execute it to see how the facts are printed:

$ ansible-navigator run facts.ym

Within the text user interface (TUI) window, type :st to capture the following
output:

PLAY [Output facts within a playbook] **

TASK [Gathering Facts] ***
ok: [node]

TASK [Prints Ansible facts] **
ok: [node] =>
msg: The IPv4 address of node is 10.3.48.101

PLAY RECAP ***
node : ok=2 changed=0 unreachable=0 failed=0

	Ansible
	Check the Prerequisites
	Objective
	Guide

	The Ansible Basics
	Objective
	Guide

	Writing Your First Playbook
	Objective
	Guide

	Using Variables
	Objective
	Guide

