DEVCONF.cz

Simplifying container orchestration with Ansible and Podman

Fabio Alessandro "Fale" Locati EMEA Principal Specialist Solutions Architect, Red Hat

Why

Automate containers with Ansible

Alternative approach

Kubernetes objects

Wrapping up

About me

- Working in IT since 2004, mostly in operations roles
- Active in open source (e.g.: Fedora FESCo)
- Ansible user since 2013
- Author of 5 books, 4 of which on Ansible
- EMEA Principal Specialist Solution Architect for Ansible @ Red Hat

Why not Kubernetes?

- Heavy infrastructure overhead
- Steep learning curve
- Operational complexity

Kubernetes shaped problems

- Provide CaaS to others
- Deployments horizontal autoscaling
- Container auto-placement

Automate containers with Ansible

What is Podman?

- A daemonless, rootless alternative to Docker
- Recently donated to the CNCF
- Key features
 - Compatible with Docker CLI
 - Native support for OCI containers
 - Native support for Kubernetes objects

Automation strategy

- Ansible modules for Podman:
 - containers.podman (29 modules + 3 plug-ins)
- Workflow Overview
 - Use Ansible to deploy and manage containers with Podman
 - Use Ansible to startup, shutdown, and updates the containers

Alternative approach

What is systemd?

- A system and service manager for Linux
- Controls system processes, services, and dependencies
- Replaces older init systems (SysV, Upstart)
- Interesting features
 - Manages long-running services efficiently
 - Supports dependency management and auto-restarts
 - Provides robust logging and monitoring with journald
 - Allows extensions for custom kind of resources
- Why Use systemd for container management?
 - Enables native service control for containers
 - Simplifies startup, shutdown, and auto-restart of containers

What is Quadlet?

- A systemd helper for Podman
- Simplifies systemd unit file creation for containers
- Allows easy deployment and management of containerized services
- Technically, Quadlet does not exists (anymore)

Quadlet key features?

- Uses declarative configuration for container management
- Supports auto-restarts and dependencies
- Enables seamless integration with systemd services

Why Quadlet?

- Removes complexity from managing Podman containers via systemd
- Reduces the need for manual unit file configurations
- Ideal for persistent containerized applications

Quadlet base example

[Container] ContainerName=myservice Image=docker.io/my/service:1.0.0 [Install] WantedBy=default.target

Strategy

- Place a file
- Reload systemd daemons
- Start and enable daemon

Ansible code example

- name: Ensure the container launcher is up to date ansible.builtin.copy: src: myservice.container dest: /etc/containers/systemd/myservice.container owner: root group: root mode: '0644' register: systemd daemons notify: Restart myservice - name: Reload systemd daemons if needed ansible.builtin.systemd: daemon reload: true when: systemd daemons.changed - name: Ensure services are started and enabled ansible.builtin.service: name: myservice state. started enabled: true - name: Restart myservice ansible builtin service. name: myservice state: restarted

Dependencies

[Unit] After=local-fs.target nebula.service

Environment variables

[Container] Environment=SECRET KEY=YOUR SECRET KEY

Port publishing

[Container] PublishPort=8080:80/tcp

Volumes

[Container] Volume=/opt/mysrv:/etc/myservice

Kubernetes objects

Kubernetes objects

[Install] WantedBy=default.target

[Kube]
Point to the yaml file in the same directory
Yaml=mySrv.yml

Kubernetes objects

apiVersion: v1 kind: Pod metadata name: haproxy spec: containers: - name: haproxy image: docker.io/haproxytech/haproxy-alpine:3.1.1 ports: - containerPort: 8448 hostPort: 8448 - containerPort: 443 hostPort: 443 volumeMounts. - mountPath: /usr/local/etc/haproxy name: config-volume volumes - name: config-volume hostPath: path: /opt/haproxy type: Directory

Wrapping up

Wrapping up

- Kubernetes is good for Kubernetes-shaped problems
- Ansible and Podman can be great to run containers
- Ansible and Podman is a very straightforard solution

Questions?

Email: fale@redhat.com Fediverse: @fale@fale.io

Links

- https://podman.io/docs/
- https://podman.io/blogs/2023/04/quadlet-tutorial.html
- https://docs.ansible.com/ansible/latest/
- https://fale.io/blog/2023/12/31/ share-volumes-between-podman-systemd-services

