bootc 101: dalla container image alla tua distro personale

Fabio Alessandro “Fale” Locati
October 25, 2025

EMEA Principal Specialist Solutions Architect, Red Hat

TOC

History

How does it work?

Creating a Containerfile for bootc images

Build and run bootc images

Wrapping up

= |T user since 1996.

= Working in IT since 2004.

= Fedora core developer since 2010.

= Immutable linux user since 2016.

= Fedora Engineering Steering Committee (FESCo) member since 2024,
= EMEA Principal Specialist Solution Architect @ Red Hat.

History

= 1988 - POSIX added support “read-only” file systems.

= 2003 - Eelco Dolstra started Nix as a research project.

= 2006 - Armijn Hemel presented NixOS as the result of his Master's thesis at
Utrecht.

s 2013 - Docker made popular the idea of immutable containers.

= 2013 - Alex Polvi created CoreOS.

= 2014 - Red Hat created Project Atomic.

= 2015 - The NixOS Foundation was founded.

= 2018 - Red Hat acquired CoreOS.

= 2024 - Red Hat announced bootc.

= 2025 - bootc ownership was moved from Red Hat to CNCF.

How does it work?

= Container: a lightweight, standalone, executable package that includes everything
needed to run an application—code, runtime, libraries, and dependencies.

= OCI container: containers that adhere to a set of standards defined by the Open
Container Initiative. The OCI was established in 2015 to standardize container
technology to improve compatibility, portability, and interoperability across
different environments.

= Snap: A universal package format developed by Canonical (the makers of
Ubuntu) that allows applications to run in an isolated environment across different
Linux distributions.

= Flatpak: A framework for building, distributing, and running sandboxed desktop
applications on Linux.

How does immutable Linux work?

= OS filesystem is (mostly) Read-Only.

= OS updates are atomic.

The OS filesystem can be reverted to previous states.

= User environments and applications run in isolated, layered containers.

Different kinds of immutable Linux

= NixOS

= CoreOS

= Project Atomic
= Fedora Atomic

= Bootc

= Tooling to turn OCI container images into bootable operating systems.
= Bridges container build workflows and real machines (VMs/bare-metal).
= Supports atomic updates & rollbacks of the whole system image.

= Leverages familiar container registries as distribution channels.

= Fits Cl/CD: versioned artifacts, tests, promotions.

Architecture in one slide

= Input: Dockerfile/Containerfile — OCl image.

= bootc: converts image layers into a bootable rootfs.

= Artifacts: disk images (qcow2/raw/vmdk), ISO, or direct install.
= Runtime: systemd-managed services, read-mostly system.

= Lifecycle: pull new image, switch on reboot, rollback if needed.

Creating a Containerfile for bootc
images

Minimal base (Containerfile)

= Start from scratch.

= Start from a bootc-ready base (kernel, initramfs, systemd included).
FROM quay.io/fedora/fedora-bootc:latest

= AlmalLinux: https://github.com/AlmaLinux/bootc-images

= Fedora: https://gitlab.com/fedora/bootc/base-images

= CentOS: https://gitlab.com/redhat/centos-stream/containers/bootc
= Arch: https://github.com/bootcrew/arch-bootc

= Debian: https://github.com/bootcrew/debian-bootc

= LinuxMint: https://github.com/bootcrew/linuxmint-bootc

= OpenSUSE: https://github.com/bootcrew/opensuse-bootc

= Ubuntu: https://github.com/bootcrew/ubuntu-bootc

https://github.com/AlmaLinux/bootc-images
https://gitlab.com/fedora/bootc/base-images
https://gitlab.com/redhat/centos-stream/containers/bootc
https://github.com/bootcrew/arch-bootc
https://github.com/bootcrew/debian-bootc
https://github.com/bootcrew/linuxmint-bootc
https://github.com/bootcrew/opensuse-bootc
https://github.com/bootcrew/ubuntu-bootc

Adding packages

= Use familiar package managers during image build, not at runtime.
= Clean caches to keep layers lean and deterministic.
= Example:
RUN dnf -y install \
nebula \

neovim \
&& dnf -y clean all

= Note: this is not an interactive session (-y mandatory).

10

WARNING

= Never use:
= dnf -y update
= dnf -y upgrade

= Ok: single package upgrade

11

Adding services

= Define systemd units as part of the image.

= Example:

COPY myDaemon.service /etc/systemd/system/

RUN systemctl enable myDaemon.service

12

Adding users

= Leverage Systemd sysuser.

= sysuser-fale.conf

#Type Name ID GECOS HomeDirectory Shell
u fale 1000 "Fale" /home/fale /bin/bash

g wheel - -

m fale wheel

= Containerfile
COPY sysuser-fale.conf /usr/lib/sysusers.d/fale.conf

= https:
//www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

13

https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html
https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

WARNING

= Examples

RUN useradd -m demo && echo 'demo:demo' | chpasswd

= Any invocation of useradd or groupadd that does not allocate a fixed UID/GID
may be subject to drift in subsequent rebuilds by default.

14

Adding users files

= Leverage Systemd sysuser.

= tmpfiles-fale.conf

#Type Path Mode User Group Age Argument...

d /var/home/fale 0700 fale fale -

d /var/home/fale/.ssh 0700 fale fale -

f+ /var/home/fale/.ssh/authorized_keys 0600 fale fale - ssh-rsa AAAAB....CWw==
Z /var/home/fale - - - -

= Containerfile

COPY tmpfiles-fale.conf /etc/tmpfiles.d/fale.conf

= https:
//www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

15

https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html
https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

Sudoers config

= Leverage sudo config folder ability.

= tmpfiles-fale.conf

fale ALL=(ALL) NOPASSWD: ALL

= Containerfile

COPY --chmod=440 sudoers-fale /etc/sudoers.d/fale

16

Firewalld

= Leverage sudo config folder ability.
= firewalld-public.xml

<?xml version="1.0" encoding="utf-8"7>
<zone>
<short>Public</short>
<description>For use in public areas.</description>
<service name="dhcpv6-client"/>
<service name="nebula"/>
<service name="ssh"/>
<forward/>
</zone>

= Containerfile

17
RUN dnf install -y firewalld

RUN bootc container lint

18

Build and run bootc images

Building the container

= Container build produces the canonical artifact.

= Keep tags semantic (e.g., 1.2.0) for safe rollouts.

= Example:

sudo podman build -t localhost/myos:1.0.0

19

Squashing

podman build --squash --pull-always

20

Publishing updates

= New image = new OS version; hosts update atomically.

= Exactly like any other container image:

podman push localhost/myos:1.0.0

21

Building an ISO

mkdir output
sudo podman run --rm -it --privileged --pull=newer \
--security-opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type iso \
--chown 1000:1000 \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

22

https://github.com/osbuild/bootc-image-builder

Building a bootable image

mkdir output
sudo podman run \
--rm \
-it \
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type qcow2 \
--use-librepo=True \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

23

https://github.com/osbuild/bootc-image-builder

Run a bootable image

gemu-system-x86_64 \
-M accel=kvm \
-cpu host \
-smp 2 \
-m 4096 \
-bios /usr/share/0VMF/0OVMF_CODE.fd \
-serial stdio \

-snapshot output/qcow2/disk.qcow?2

24

Installing bootc OS

podman run --rm \
-v /dev:/dev \
-v /var/lib/containers:/var/lib/containers \
-v /:/target \
--privileged \
--pid=host \
--security-opt label=type:unconfined_t \
quay.io/fale/server:stable \
bootc install to-existing-root \
--root-ssh-authorized-keys /target/root/.ssh/authorized_keys

25

Atomic updates & rollback

= Updates are transactional; system switches entirely on reboot.
bootc upgrade --apply
= Rollback path is symmetrical and fast.

bootc rollback --apply

= No partial upgrades or dependency hell on production hosts.

= Possible to switch to a different image:

bootc switch --apply quay.io/fedora/fedora-bootc:43

26

Some suggestions

= Base OS image + application layer(s).

= Keep image single-purpose (appliance mindset).
= Prefer deterministic package sets and configs.

= Automate!

= No, really, automate!

27

Wrapping up

Wrapping up

= bootc offers a reliable, secure, and stable operating environment at the cost of
flexibility.

= bootc is very convinient for big deployment of similar systems (kiosks, labs, cloud,

= |t is easy to create distros with bootc.

28

Questions?

Email: mail@fale.io
Fediverse: @fale@fale.io

o

29

» https://bootc-dev.github.io/bootc/
= https://docs.fedoraproject.org/en-US/bootc/

= https:
//fedoramagazine.org/building-your-own-atomic-bootc-desktop/

30

https://bootc-dev.github.io/bootc/
https://docs.fedoraproject.org/en-US/bootc/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/

	History
	How does it work?
	Creating a Containerfile for bootc images
	Build and run bootc images
	Wrapping up

