
bootc 101: dalla container image alla tua distro personale

Fabio Alessandro “Fale” Locati
October 25, 2025

EMEA Principal Specialist Solutions Architect, Red Hat

TOC

History

How does it work?

Creating a Containerfile for bootc images

Build and run bootc images

Wrapping up

1

About me

• IT user since 1996.
• Working in IT since 2004.
• Fedora core developer since 2010.
• Immutable linux user since 2016.
• Fedora Engineering Steering Committee (FESCo) member since 2024.
• EMEA Principal Specialist Solution Architect @ Red Hat.

2

History

History

• 1988 - POSIX added support “read-only” file systems.
• 2003 - Eelco Dolstra started Nix as a research project.
• 2006 - Armijn Hemel presented NixOS as the result of his Master’s thesis at

Utrecht.
• 2013 - Docker made popular the idea of immutable containers.
• 2013 - Alex Polvi created CoreOS.
• 2014 - Red Hat created Project Atomic.
• 2015 - The NixOS Foundation was founded.
• 2018 - Red Hat acquired CoreOS.
• 2024 - Red Hat announced bootc.
• 2025 - bootc ownership was moved from Red Hat to CNCF.

3

How does it work?

Definitions

• Container: a lightweight, standalone, executable package that includes everything
needed to run an application—code, runtime, libraries, and dependencies.

• OCI container: containers that adhere to a set of standards defined by the Open
Container Initiative. The OCI was established in 2015 to standardize container
technology to improve compatibility, portability, and interoperability across
different environments.

• Snap: A universal package format developed by Canonical (the makers of
Ubuntu) that allows applications to run in an isolated environment across different
Linux distributions.

• Flatpak: A framework for building, distributing, and running sandboxed desktop
applications on Linux.

4

How does immutable Linux work?

• OS filesystem is (mostly) Read-Only.
• OS updates are atomic.
• The OS filesystem can be reverted to previous states.
• User environments and applications run in isolated, layered containers.

5

Different kinds of immutable Linux

• NixOS
• CoreOS
• Project Atomic
• Fedora Atomic
• Bootc

6

What is bootc?

• Tooling to turn OCI container images into bootable operating systems.
• Bridges container build workflows and real machines (VMs/bare-metal).
• Supports atomic updates & rollbacks of the whole system image.
• Leverages familiar container registries as distribution channels.
• Fits CI/CD: versioned artifacts, tests, promotions.

7

Architecture in one slide

• Input: Dockerfile/Containerfile → OCI image.
• bootc: converts image layers into a bootable rootfs.
• Artifacts: disk images (qcow2/raw/vmdk), ISO, or direct install.
• Runtime: systemd-managed services, read-mostly system.
• Lifecycle: pull new image, switch on reboot, rollback if needed.

8

Creating a Containerfile for bootc
images

Minimal base (Containerfile)

• Start from scratch.
• Start from a bootc-ready base (kernel, initramfs, systemd included).

FROM quay.io/fedora/fedora -bootc:latest

• AlmaLinux: https://github.com/AlmaLinux/bootc-images
• Fedora: https://gitlab.com/fedora/bootc/base-images
• CentOS: https://gitlab.com/redhat/centos-stream/containers/bootc
• Arch: https://github.com/bootcrew/arch-bootc
• Debian: https://github.com/bootcrew/debian-bootc
• LinuxMint: https://github.com/bootcrew/linuxmint-bootc
• OpenSUSE: https://github.com/bootcrew/opensuse-bootc
• Ubuntu: https://github.com/bootcrew/ubuntu-bootc

9

https://github.com/AlmaLinux/bootc-images
https://gitlab.com/fedora/bootc/base-images
https://gitlab.com/redhat/centos-stream/containers/bootc
https://github.com/bootcrew/arch-bootc
https://github.com/bootcrew/debian-bootc
https://github.com/bootcrew/linuxmint-bootc
https://github.com/bootcrew/opensuse-bootc
https://github.com/bootcrew/ubuntu-bootc

Adding packages

• Use familiar package managers during image build, not at runtime.
• Clean caches to keep layers lean and deterministic.
• Example:

RUN dnf -y install \
nebula \
neovim \
&& dnf -y clean all

• Note: this is not an interactive session (-y mandatory).

10

WARNING

• Never use:
• dnf -y update
• dnf -y upgrade

• Ok: single package upgrade

11

Adding services

• Define systemd units as part of the image.
• Example:

COPY myDaemon.service /etc/systemd/system/
RUN systemctl enable myDaemon.service

12

Adding users

• Leverage Systemd sysuser.
• sysuser-fale.conf

#Type Name ID GECOS HomeDirectory Shell
u fale 1000 "Fale" /home/fale /bin/bash
g wheel - -
m fale wheel

• Containerfile

COPY sysuser -fale.conf /usr/lib/sysusers.d/fale.conf

• https:
//www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

13

https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html
https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

WARNING

• Examples

RUN useradd -m demo && echo 'demo:demo' | chpasswd

• Any invocation of useradd or groupadd that does not allocate a fixed UID/GID
may be subject to drift in subsequent rebuilds by default.

14

Adding users files

• Leverage Systemd sysuser.
• tmpfiles-fale.conf

#Type Path Mode User Group Age Argument...
d /var/home/fale 0700 fale fale -
d /var/home/fale/.ssh 0700 fale fale -
f+ /var/home/fale/.ssh/authorized_keys 0600 fale fale - ssh-rsa AAAAB....CWw==
Z /var/home/fale - - - -

• Containerfile

COPY tmpfiles -fale.conf /etc/tmpfiles.d/fale.conf

• https:
//www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

15

https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html
https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

Sudoers config

• Leverage sudo config folder ability.
• tmpfiles-fale.conf

fale ALL=(ALL) NOPASSWD: ALL

• Containerfile

COPY --chmod=440 sudoers -fale /etc/sudoers.d/fale

16

Firewalld

• Leverage sudo config folder ability.
• firewalld-public.xml

<?xml version="1.0" encoding="utf-8"?>
<zone>

<short >Public </short >
<description >For use in public areas.</description >
<service name="dhcpv6 -client"/>
<service name="nebula"/>
<service name="ssh"/>
<forward/>

</zone>

• Containerfile
RUN dnf install -y firewalld
COPY firewalld -public.xml /etc/firewalld/zones/public.xml

• Alternative option:
RUN firewall -offline -cmd --zone=public --add-service=nebula

17

Linting

RUN bootc container lint

18

Build and run bootc images

Building the container

• Container build produces the canonical artifact.
• Keep tags semantic (e.g., 1.2.0) for safe rollouts.
• Example:

sudo podman build -t localhost/myos:1.0.0 .

19

Squashing

podman build --squash --pull-always .

20

Publishing updates

• New image = new OS version; hosts update atomically.
• Exactly like any other container image:

podman push localhost/myos:1.0.0

21

Building an ISO

mkdir output
sudo podman run --rm -it --privileged --pull=newer \

--security -opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type iso \
--chown 1000:1000 \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

22

https://github.com/osbuild/bootc-image-builder

Building a bootable image

mkdir output
sudo podman run \

--rm \
-it \
--privileged \
--pull=newer \
--security -opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type qcow2 \
--use-librepo=True \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

23

https://github.com/osbuild/bootc-image-builder

Run a bootable image

qemu-system -x86_64 \
-M accel=kvm \
-cpu host \
-smp 2 \
-m 4096 \
-bios /usr/share/OVMF/OVMF_CODE.fd \
-serial stdio \
-snapshot output/qcow2/disk.qcow2

24

Installing bootc OS

podman run --rm \
-v /dev:/dev \
-v /var/lib/containers:/var/lib/containers \
-v /:/target \
--privileged \
--pid=host \
--security -opt label=type:unconfined_t \
quay.io/fale/server:stable \

bootc install to-existing -root \
--root-ssh-authorized -keys /target/root/.ssh/authorized_keys

25

Atomic updates & rollback

• Updates are transactional; system switches entirely on reboot.

bootc upgrade --apply

• Rollback path is symmetrical and fast.

bootc rollback --apply

• No partial upgrades or dependency hell on production hosts.
• Possible to switch to a different image:

bootc switch --apply quay.io/fedora/fedora -bootc:43

26

Some suggestions

• Base OS image + application layer(s).
• Keep image single-purpose (appliance mindset).
• Prefer deterministic package sets and configs.
• Automate!
• No, really, automate!

27

Wrapping up

Wrapping up

• bootc offers a reliable, secure, and stable operating environment at the cost of
flexibility.

• bootc is very convinient for big deployment of similar systems (kiosks, labs, cloud,
...).

• It is easy to create distros with bootc.

28

Questions?
Email: mail@fale.io

Fediverse: @fale@fale.io

29

Links

• https://bootc-dev.github.io/bootc/

• https://docs.fedoraproject.org/en-US/bootc/

• https:
//fedoramagazine.org/building-your-own-atomic-bootc-desktop/

30

https://bootc-dev.github.io/bootc/
https://docs.fedoraproject.org/en-US/bootc/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/

	History
	How does it work?
	Creating a Containerfile for bootc images
	Build and run bootc images
	Wrapping up

