

NOVEMBER 3-6 25

Simplifying container orchestration with Ansible and Podman

Fabio Alessandro "Fale" Locati

Principal Specialist Solution Architect Red Hat

TOC

Why?

Automate containers with Ansible

Alternative approach

SELinux

Kubernetes objects

Wrapping up

About me

- Working in IT since 2004, mostly in operations roles
- Active in open source (e.g.: Fedora FESCo)
- Ansible user since 2013
- Author of 5 books, 4 of which on Ansible
- ▶ EMEA Principal Specialist Solution Architect for Ansible @ Red Hat

Disclaimers

- Everything we are discussing is fully open source (but also available with Enterprise support)
- Everything we are discussing is architecture independent (x86_64, aarch64, s390x, ppc64le)
- Linux is required (distro does not matter, as long as it has systemd)

Why?

Why not Kubernetes?

- Heavy infrastructure overhead
- Steep learning curve
- Operational complexity

Kubernetes shaped problems

- Provide CaaS to others
- Deployments horizontal autoscaling
- Container auto-placement

Automate containers with Ansible

What is Podman?

- A daemonless, rootless alternative to Docker
- Donated to the CNCF in November 2024
- Key features
 - Compatible with Docker CLI
 - Native support for OCI containers
 - Native support for Kubernetes objects

Automation strategy

- Ansible modules for Podman:
 - containers.podman (29 modules + 3 plug-ins)
- Workflow Overview
 - Use Ansible to deploy and manage containers with Podman
 - Use Ansible to startup, shutdown, and updates the containers

Alternative approach

What is systemd?

- A system and service manager for Linux (aka PID1)
- Controls system processes, services, and dependencies
- Replaces older init systems (SysV, Upstart)
- Interesting features
 - Manages long-running services efficiently
 - Supports dependency management and auto-restarts
 - Provides robust logging and monitoring with journald
 - Allows extensions for custom kind of resources
- Why Use systemd for container management?
 - Enables native service control for containers
 - Simplifies startup, shutdown, and auto-restart of containers

What is Quadlet?

- A systemd helper for Podman
- Simplifies systemd unit file creation for containers
- Allows easy deployment and management of containerized services
- Technically, Quadlet does not exists (anymore)

Quadlet key features?

- Uses declarative configuration for container management
- Supports auto-restarts and dependencies
- Enables seamless integration with systemd services

Why Quadlet?

- Removes complexity from managing Podman containers via systemd
- Reduces the need for manual unit file configurations
- Ideal for persistent containerized applications

Quadlet base example

[Container]

ContainerName=myservice

Image=docker.io/my/service:1.0.0

[Install]

WantedBy=default.target

Strategy

- Place a file
- Reload systemd daemons
- Start and enable daemon

Ansible code example

```
- name: Ensure the container launcher is up to date
 ansible.builtin.copy:
    src: myservice.container
   dest: /etc/containers/systemd/myservice.container
    owner: root
   group: root
   mode: '0644'
 register: systemd daemons
 notify: Restart myservice
- name: Reload systemd daemons if needed
 ansible.builtin.systemd:
   daemon reload: true
 when: systemd_daemons.changed
- name: Ensure services are started and enabled
 ansible builtin service.
   name: myservice
    state: started
    enabled: true
- name: Restart myservice
  ansible builtin service:
   name: mvservice
    state: restarted
```


Dependencies

[Unit]

After=local-fs.target nebula.service

Environment variables

[Container]

Environment=SECRET_KEY=YOUR_SECRET_KEY

Port publishing

[Container]

PublishPort=8080:80/tcp

Volumes

[Container]

Volume=/opt/mysrv:/etc/myservice

SELinux

What is SELinux?

A mandatory access control (MAC) mechanism for Linux that enforces security policies beyond traditional discretionary access control (DAC).

Why use SELinux?

- Provides fine-grained access control
- Limits damage from vulnerabilities
- Enforces least privilege principles

Why use SELinux?

- "Containers do not contain" (Dan Walsh)
- SELinux is important
- You should use it
- No, really, go and enable it, NOW

Ansible code example

```
    name: Ensure MyService folder exist
    ansible.bulltin.file:
    path: /opt/mysrv
    state: directory
    mode: '0755'
    name: Ensure SELinux enforces the right security on MyService folder
    community.general.sefcontext:
    target: '/opt/mysrv(/.*)?'
    seuser: system_u
    setype: container_file_t
    state: present
```


Volumes - Exclusive access (retag)

[Container]

Volume=/opt/mysrv:/etc/myservice:Z

Volumes - Exclusive access (no-retag)

[Container]

Volume=/opt/mysrv:/etc/myservice:z

[Container]

SecurityLabelLevel=s0

No security!

[Container]

SecurityLabelLevel=s0:c47,c514

Kubernetesobjects

Kubernetes objects

```
[Install]
WantedBy=default.target

[Kube]
# Point to the yaml file in the same directory
Yaml=mySrv.yml
```


Kubernetes objects

```
apiVersion: v1
kind: Pod
metadata:
  name: haproxy
spec:
  containers:
    - name: haproxy
      image: docker.io/haproxytech/haproxy-alpine:3.2.7
      ports:
        - containerPort: 8448
          hostPort: 8448
        - containerPort: 443
          hostPort: 443
      volumeMounts:
        - mountPath: /usr/local/etc/haproxy
          name: config-volume
  volumes:
    - name: config-volume
      hostPath.
        path: /opt/haproxy
        type: Directory
```


Wrappingup

Wrapping up

- Kubernetes is good for Kubernetes-shaped problems
- Ansible and Podman can be great to run containers
- Ansible and Podman is a very straightforward solution

Links

- https://podman.io/docs/
- https://podman.io/blogs/2023/04/quadlet-tutorial.html
- https://docs.ansible.com/ansible/latest/
- https:

```
//fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services
```


Session feedback

- Submit your feedback at using the Whoova app or at the conference website https://conferences.gse.org.uk/2025/feedback/LG
- Make sure you are signed into MyGSE
- This session is LG

				n number		legate bad	pe	
2. Was	the lengtl	n of this pe	resention c	orrect?				
* 11	io 4 = "Too	Short" 5 =	"OK" 6-9 =	"Too Long"				
ò	Ò	Ò	Ô	ó	ô	Ô	Ö	Ô
3. Did	this preser	ntion mee	t your requ	uirements?				
* 11	o 4 = "No"	5 = "OK" 6	9 = "Yes"					
ò	Ò	o d	ô	ó	ô	Ô	ô	Ô
4. Was	the sessio	n content	what you	expected?				
* 11	o 4 = "No"	5 = "OK" 6	9 = "Yes"					
ò	ò	ò	ô	ó	ô	Ô	ô	ô